
MATH  22
Lecture Y:   12/2/2003

GRAPH  COLORING

Here of a Sunday morning
My love and I would lie
And see the colored counties
And hear the larks so high
About us in the sky.

—A.E.Housman,
A Shropshire Lad
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Administrivia
• http://larry.denenberg.com/math22/LectureY.pdf

• Final project and problem set due next time, 12/4, at
the START of lecture!   [That word again is START.]

• FINAL EXAM  THURSDAY DECEMBER 11,
8:30 – 10:30 AM,  ROBINSON 253 (same as Exam 3)

• Next time:
– Final review:  bring or email questions!
– Course evaluation:  Bring a #2 pencil or blue or

black ink pen, plus comments on the lecture notes.
http://larry.denenberg.com/cs124-eval contains an
example of review comments.

• Article for your consideration:  “The Role of Logic in
Teaching Proof” by Susanna S. Epp, American Math.
Monthly vol 110 no. 10, December 2003, p 886.

Today:  Vertex coloring and the Four Color Theorem



Vertex Coloring
Let G be an undirected graph without self-loops or
multiple edges (this is the only kind of graph for today).
To perform a vertex coloring of G, we assign a color to
each node according to the following rule:   if two nodes
are adjacent (i.e., if they’re connected by an edge) then
they must get different colors.   [blackboard examples]

Formally, a vertex coloring of G is a mapping  f  from
the vertex set of G to any set C of objects called colors,
such that if (u,v) is any edge of G then  f(u) ≠ f(v).

Obviously we can color any graph using a different color
for each vertex.  The trick is to use as few colors as
possible!  Reason:  Coloring is used to model situations
with entities (nodes) that must be kept separate (edges);
colors then model resources assigned to nodes.

Example:  N  committees must meet each week.  If two
committees have members in common, they must meet
at different times.  How many meeting times are needed?
Answer:  Let each committee be a node, with edges
between nodes if the associated committees have
common members.  The number of times needed is the
minimum number of colors required to color this graph.



Chromatic Number
Let G be an undirected loop-free graph.  The chromatic
number of G, written c(G), is the smallest number of
colors that can be used to perform a vertex coloring of G.

Examples:

c(Kn) = n, since no two nodes of Kn can have the same
color (all possible edges exist).

If G  is any edgeless graph, then c(G) = 1, since all
nodes can get the same color.

If  G  is any bipartite graph, then c(G) = 2:  we can color
each part with a single color since no edge can touch two
nodes in the same part.  (Indeed, c(G) = 2 could serve
pretty well as the definition of bipartite, with a little
weirdness about what to do with edgeless graphs.)

Theorem:  If the largest node degree in G is k, then the
chromatic number of G is at most k+1.
Proof:  Color the vertices of G one by one.  With k+1
colors available you can’t ever run into a problem,
because no node is adjacent to more than k other nodes.



Planar maps and 4CT
When coloring a map, we wish to have adjacent regions
colored with distinct colors.  (Two regions are adjacent
if they touch along a line segment, not just at a finite
number of points.)  This problem is the same as graph
coloring.  Here’s why:

Given a map, construct a graph G with one vertex for
each region and an edge connecting each pair of vertices
that correspond to adjacent regions.  Then c(G) is the
number of colors needed to color the map.  [picture]

Theorem (Appel and Haken, 1976):  If G is a planar
graph, then c(G) ≤ 4.  Equivalently, four colors suffice to
color any planar map.  (We’ll prove a simpler version.)

This theorem was first proposed in 1852 by a student
who was coloring a map of the counties of England.

Applies also to maps on a sphere, which can be made
planar by puncture-and-flatten.  Not applicable to maps
on a torus or more complex surfaces.  (The number of
colors necessary to color a map on a surface of genus g
is  Î(7 + ÷(1 + 48g)) / 2˚, which is 7 for a torus.)



5CT
We’ll talk later about how to prove 4CT.   But it’s fairly
easy to prove that 5 colors always suffice!

Theorem:  If  G  is a planar graph, then  c(G) ≤ 5.

Proof:  By induction on the number of vertices of G.

Base case:  If  G  has 1 vertex then obviously  G  can be
colored with 5 colors.  (You may have noticed that this
base case works perfectly well up to 5 vertices.)

Inductive case:  Suppose all planar graphs with n vertices
are 5-colorable, and let G be a planar graph with n+1
vertices.

By a corollary to Euler’s formula (proved last time) we
know that G has some vertex  x  with degree ≤ 5.

If  x  has degree four or fewer, we’re done:  Remove  x
from G along with its edges, color the rest of G with 5
colors (surely possible by the inductive hypothesis), then
replace x.  Since  x  is adjacent to only 4 other vertices,
there is a color with which  x  can be colored.  [picture]

All that’s left is the case where  x  has degree 5.



 Proof of 5CT, cont.
If  x  has degree 5 we do the same thing:  Remove  x
from G, color G–x with 5 colors, then put  x  back.   If
the five neighbors of  x  have only four colors, there’s a
color left for  x  and we’re done.

The problematic case is when the five neighbors of x,
call them [in order!]  v1, v2, v3, v4, v5, have five different
colors in the 5-coloring of G–x, so that there’s no color
left for  x.  Let ci be the color of vi for each i.  [picture]

Let H be the subgraph of G–x consisting of all vertices
colored c1 or c3 plus all edges between these vertices.
Suppose first that v1 and v3 are in different connected
components of H [picture].  Then we recolor all vertices
in v1’s component by swapping c1 and c3 everywhere.
This new coloring is a legal coloring of G–x.
[Proof:  The only possible problem is if there is now an
edge joining two nodes with the same color, c1 or c3.
This can happen only in v1’s component in H since the
rest of H is unchanged.   But c1 and c3 are swapped
everywhere in that component, so it doesn’t happen.]
Now v1 has color c3 so we can color x with c1 and we’re
done.



Proof of 5CT, cont.
The last case to consider is that v1 and v3 are in the same
connected component of H.  This means that there is a
path P connecting them.  Since the vertices of P lie
entirely within H, they are all colored c1 or c3.  But then
the colors c1 and c3 must alternate along P.
Such a path P is called a Kempe chain.  [picture]

[Digression:  Kempe was the first person to “prove” the
4CT, in 1879, but his proof was shown to be flawed in
1890.   The ideas from his proof are those used here to
prove 5CT, and they’re also used in the proof of 4CT.]

If we add x to P we get a cycle.  This cycle must enclose
either v2 or both v4 and v5.  [picture]  In either case, there
cannot be a Kempe chain from v2 to v4 of vertices
colored alternately c2 and c4—any such chain would
have to intersect P!   [Why is this impossible?]

So v2 and v4 must lie in different connected components
of the subgraph of G–x made up of the vertices colored
c2 or c4.  We can therefore swap c2 and c4 in one of these
components as before, freeing up a color for x.   QED



How to prove 4CT
A configuration of a planar graph, loosely, consists of
some vertices, the edges between those vertices, and the
edges connecting these vertices to the rest of the graph
(but not the vertices on the other sides of those edges,
which is why a configuration is not a subgraph).
[blackboard picture of some configurations]

A set of configurations is called unavoidable if every
planar graph must contain at least one member of the set.
[blackboard examples]

We call a configuration C reducible if it satisfies the
following property:  Suppose G is any planar graph that
contains C and is not 4-colorable.  Then there is a graph
with fewer vertices than G that is also not 4-colorable.
That is, a reducible configuration can be used to reduce
the number of vertices of a non-4-colorable graph.

Example:  A configuration consisting of a single,
isolated vertex is obviously reducible;  so is an isolated
copy of K4.  [blackboard:  other examples]



Proof of the 4CT
To prove the Four Color Theorem, Appel and Haken—
with the help of a computer and a graduate student—
constructed an unavoidable set of configurations, each of
which is reducible.   Using this set (call it S) we finish
off the proof like this:

Suppose the Four Color Theorem is false.   Let G be a
graph that is not 4-colorable and has the fewest possible
number of vertices.  (That is, any graph with fewer
vertices than G must be 4-colorable.  Clearly G exists.)

Since the set of configurations S is unavoidable, G must
contain a configuration from S, call it C.  But since C is
reducible, we can construct a graph with fewer vertices
than G that is not four-colorable!  Contradiction.

The unavoidable set of reducible configurations
constructed by Appel and Haken had nearly 2000
members, later reduced to about 1500.  A newer proof
(Robertson, Sanders, Seymour, Thomas) uses only 633
reducible configurations.


