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 PLANAR GRAPHS  &
EULER’S FORMULA

Regions of sorrow, . . . where peace
and rest can never dwell, hope
never comes.
—Milton, Paradise Lost (on Tufts)

Ornate rhetoric taught out of the
rule of Plato.

—Milton, Of Education
(on Math 22B)
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Administrivia
• http://larry.denenberg.com/math22/LectureX.pdf

• Exam followup?

• Grading policy followup?

• N.B.:  Final homework and projects are due on 12/4

Today:  Planar graphs, Euler’s Formula, and some
consequences and generalizations.



Planarity
An undirected graph G, which can be a multigraph and
can have self-loops, is planar if it can be drawn in the
plane in such a way that no edges cross (this is always
what “drawn in the plane” means).  Note that edges don’t
have to be drawn as straight lines.

As definitions go, this one is rotten, but a more precise
definition isn’t really illuminating.  Only undirected
graphs today, by the way.

Any number of multiple edges or self-loops, no matter
how many, don’t really matter; they can always be
drawn small enough not to affect anything.

[blackboard examples of definitely-planar and maybe-
nonplanar graphs]

Question:  How do we know if a graph is planar or not?
If we can draw it in the plane, it’s planar for sure.   But if
we can’t, maybe we’re just not clever enough.  How do
we know when to quit trying?  [This is typical:  It’s
easier to show how to do something than to prove there’s
no possible way to do it.]



Regions
When a graph is drawn in the plane, it divides the plane
into regions called (surprisingly) regions.  Sometimes
they’re called faces for a good reason that we’ll see soon.

Note that there is always exactly one infinite region since
a finite graph must occupy a finite portion of the plane.
The term “region” is not defined for nonplanar graphs or
for nonplanar drawings of planar graphs.

When a graph G is drawn in the plane, how many
regions does it have?  Can it depend on how you draw it?
The answer is that the number of regions depends only
on the graph and not on any particular drawing.  It’s a
property of G, just like the number of vertices or edges.

Theorem:  Suppose that G is a planar graph that has
v  vertices,  e  edges, and  k  connected components.
Then any planar drawing of G has  k + e – v +1  regions.

This Theorem is more usually written like this:
v – e + r  = k + 1

When G is connected, we get  Euler’s Formula
v – e + r  =  2

of which we’ll see two Awesome Generalizations later.



Proof of Euler’s Formula
The proof is by induction on  e, the number of edges.

Base case,  e = 0:   An edgeless graph on  v  vertices has
v connected components, and no matter how you draw it
there’s only 1 region.    Plug in and verify the Formula.

Inductive case:  Suppose the Formula is true for all
graphs with  e  or fewer edges, and let G be any graph
with  e+1  edges.  Pick any edge  e0  from G and delete
it, obtaining graph H, in which the Formula holds by the
Inductive Hypothesis.   There are two possibilities:

Possibility 1:   e0 joins two nodes in distinct connected
components of H.  In this case G has one fewer
connected component and one more edge than H, but the
number of regions remains the same [picture].
So the Formula is valid for G.

Possibility 2:   e0 joins nodes in the same connected
component of H.   In this case G has the same number of
connected components as H, but has one more edge and
one more region, so again the Formula is valid for G.
[Blackboard:  semi-handwaving proof that G has one
more region than H.  Special case if  e0  is a self-loop!]



Corollaries of Euler’s F
If G is a planar graph, not a multigraph, with no self
loops and at least 2 edges, then  3r ≤ 2e.   (That is, you
can’t have lots of regions without lots of edges!)
Proof:   This is obvious when r = 1.  If  r > 1, then each
region is bounded by at least 3 edges, so the total number
of “edge-boundings” (instances where an edge touches a
region) is  ≥ 3r.   But each edge bounds at most 2
regions, so the number of “edge-boundings” is also ≤ 2e.
This implies that 3r ≤ 2e.  [Where did we use  the fact
that G has neither self-loops nor multiple edges?]

Under the same hypotheses,  e  ≤  3v – 3k – 3.
(That is, a planar graph can’t have too many edges.)
Proof:  From Euler’s formula,

k + 1   =   v – e + r   ≤   v – e + 2e/3   =   v – e/3
from which a little arithemetic gives the result.  When
the graph is connected, we have  e  ≤  3v – 6.

Every planar graph without self loops or multiple edges
has at least one vertex with degree ≤ 5.
Proof:  Assume there is a graph where all nodes have
degree at least 6.  The sum of the node degrees is then at
least 6v.  This sum is also 2e (remember?) so we have
2e ≥ 6v  or  e ≥ 3v.  But this contradicts e ≤ 3v–3k–3.
Corollary:  Kn is non-planar for every  n ≥ 7.



Two Non-Planar Graphs
Fact:  K5, the complete graph on 5 nodes, is nonplanar.
Proof:  In K5 we have v = 5 and e = 10, so we don’t have
e ≤ 3v–6  as we must in all connected planar graphs.

Definition:  For integers u,v ≥ 1, the complete bipartite
graph on u and v nodes, written  Ku,v,  is the undirected
bipartite graph with no multiple edges, with u vertices in
one part and v vertices in the other part, and with every
possible edge between the parts.  [blackboard examples]

Fact:  K3,3 is nonplanar.
Proof:  If K3,3 were planar, it would have 5 regions by
Euler’s formula.  Now K3,3 contains no triangles [why?]
so each region would touch at least 4 edges, making at
least 20 “edge-boundings”.  But K3,3 has only 9 edges
and each bounds at most 2 regions, a contradiction.

It turns out that these two nonplanar graphs are more
than just examples; they are the very essence of
nonplanarity.   The next theorem, which we won’t prove,
says essentially that every nonplanar graph contains one
of these two graphs as (sort of) a subgraph!



Kuratowski’s Theorem
Definition:  Two graphs are homeomorphic if they can
be made isomorphic via the following operations:

– Delete any edge {u,v}, then add a new vertex w
and edges {u,w} and {w,v}

– Delete any vertex w of degree two, delete
(perforce) its adjacent edges {u,w} and {w,v},
then add new edge {u,v}

Informally, two graphs are homeomorphic if they can be
made the same by putting dots on lines, or erasing dots
that have only two lines coming out of them and merging
the lines.  The phrase “isomorphic up to vertices of
degree 2” means the same thing.  [Blackboard examples]

Theorem:  A graph is nonplanar if and only if it contains
a subgraph homeomorphic either to K5 or to K3,3.
Proof:  Half the proof is easy, since a graph with a
subgraph homeomorphic to K5 or K3,3 clearly can’t be
planar.  (This can’t be plainer.)  The converse is harder.
This Theorem is called Kuratowski’s Theorem.

[Blackboard examples of nonplanar graphs]



Polyhedra
A polyhedron is a solid object bounded by planar
polygonal surfaces, each of which is called a face.
The vertices and edges of the faces are also the vertices
and edges of the polyhedron.
[blackboard drawings, insofar as I can draw polyhedra]
Note that polyhedra need not be convex.

Every polyhedron corresponds to a connected planar
graph with the same number of edges and vertices.  To
get this graph, puncture any face of the polyhedron and
pull the hole open until the polyhedron is stretched out
flat.  [even less coherent drawings; artist needed!]

Each face of the polyhedron corresponds to a region of
the planar graph;  the face we punctured becomes the
infinite region.   It follows that   v – e + f  = 2  for any
polyhedron, where  f  is the number of its faces.

A convex polyhedron is a Platonic solid if its faces are
identical regular polygons, and at each vertex the same
number of faces come together at the same (solid) angle.
[blackboard drawing of at most two Platonic solids]
Question:  How many Platonic solids exist?



All the Platonic Solids
Suppose a Platonic solid has  v  vertices,  e  edges,  and
f  faces.   Suppose each face is a regular  m-gon and that
n  faces meet at each vertex.

Fact:  m ≥ 3    (each face must be at least a triangle)
Fact:  n ≥ 3      (each vertex lies in at least three faces)
Fact:  2e = mf   (each edge lies in two faces, each of

  which has m edges)
Fact:  2e = nv   (there are 2e edge endpoints, and each

  vertex is the endpoint of n edges)

Using these facts and Euler’s formula, we get:
2  =  v – e + f  =  2e/n – e + 2e/m  =  (2m–mn+2n)e/mn

Therefore (2m–mn+2n) > 0, hence (mn–2m–2n) < 0,
hence (mn–2m–2n+4) < 4, hence finally (m–2)(n–2) < 4.

But m and n are integers each at least 3, so the only
possibilities are:
   m = n = 3       (so e=6, v=f=4), the regular tetrahedron
   m = 4,  n = 3  (so e=12, f=6, v=8), the cube
   m = 3,  n = 4  (so e=12, f=8, v=6), the octahedron
   m = 5,  n = 3  (so e=30, f=12, v=20), the dodecahedron
   m = 3,  n = 5  (so e=30, f=20, v=12), the icosahedron



Awesome Generalization 1
Suppose P is a solid object bounded by plane polygonal
faces, but is not a polyhedron because it has “holes”.

[Blackboard drawing of a cube with a square hole
through it.  Note that each face must be a polygon, so the
front “face” is really four faces, each a trapezoid, with
edges between them.  The object has 16 faces, 16
vertices, and 32 edges;  it’s regular of degree 4.]

The number of holes in P is called the genus of P.   The
object drawn on the blackboard has genus 1.

Theorem:  Given any such solid object with  v  vertices,
e  edges,  f  faces, and genus g,  we have

v – e + f  =  2 – 2g
Proof:  Omitted.

When the object is a polyhedron there are no holes, so
g = 0 and the theorem reduces to Euler’s formula.



Awesome Generalization 2
The object that generalizes vertex (0 dimensions),
edge (1d), polygon (2d), and polyhedron (3d) to an
arbitrary number of dimensions is called a polytope.

A polygon is bounded by vertices and edges.
A polyhedron is bounded by vertices, edges, and faces.
Similarly, an n-dimensional polytope is bounded by
vertices, edges, faces, polyhedra, ..., and polytopes of all
dimension up to n–1.  We also consider an n-d polytope
to be bounded by a single n-d polytope, namely itself.

Example:  The 4-hypercube is a 4 dimensional polytope
bounded by 16 vertices, 32 edges, 24 (square) faces,
8 (cubical) polyhedra, and itself.  [blackboard drawing]

Theorem:  Let P be an n-dimensional polytope bounded
by  bk  polytopes of dimension  k, for each  0 ≤ k ≤ n.
(So P has  b0 vertices, b1 edges, etc., and  bn = 1.)  Then

b0  –  b1  +  b2  –  b3  + . . . +  (–1)nbn   =   1
Proof: You must be joking.  Check it on the 4-
hypercube.
In 3 dimensions, this is v – e + f – 1 = 1, Euler’s formula.
In 2d, it says any polygon has as many vertices as edges.
In 1d, it says that an edge joins two vertices.



Duality Again
Suppose  G  is a planar graph or multigraph, possibly
including self-loops, and we have a planar drawing of G.
A dual graph of G, written Gd, is generated from this
drawing as follows:

– Each region in the drawing becomes a node of Gd.
– For each edge  e  of G we make an edge of Gd :

If  e  separates two regions of G, we put an edge
between the nodes of Gd that correspond to those
regions.  If  e  lies wholly within a region of G, we
give the corresponding node of  Gd  a self loop.

A dual graph of G has as many vertices as G has regions,
and has the same number of edges as G.

A dual graph of G is connected whether or not G is
connected.   But if G is connected, it follows from
Euler’s formula that Gd has as many regions as G has
vertices.

A dual graph of G may be a multigraph and may have
self loops, even if G is not a multigraph and has no self-
loops.

A dual is generated from a drawing of G.  Depending on
how G is drawn, we may get different results.  That is, a
graph can have non-isomorphic dual graphs.


