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HAMILTONIAN
GRAPHS

 All communities [graphs] divide
themselves into the few and the many
[i.e., are bipartite].

—Alexander Hamilton,
Debates of the Federal Convention

Before a group [graph] can enter the
open society, it must first close ranks.

—Charles Vernon Hamilton,
Black Power!

Truth, like a torch.
—Sir William Hamilton, On Math 22
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Administrivia
• http://larry.denenberg.com/math22/LectureV.pdf

(note change!)

• Comments on grading

• Comments on Project 6  #1 and #2

• EXAM 3:  MONDAY 11/24
Review Thursday;  send questions via email   (hah!)
Note change in coverage (11.5 is out)

Today:  Hamiltonian graphs



Hypercubes
The n-dimensional hypercube, Qn, is the undirected
graph whose vertices are the bit strings of length n and
with edges connecting vertices that differ in a single bit.
[blackboard examples clarifying this opaque definition]

Properties of the hypercube:
• Qn has 2n vertices.
• Qn is regular of degree n.
• Qn has n2n–1 edges. [Proof:  By the first two properties,
the sum of the node degrees is  n2n.  Cut this in half.]
• Qn is connected, and between any two nodes there is a
path of length at most n, with mean n/2.  [Digression on
processor connectivity;  the distance between processors
in a hypercube grows as the base-2 log of their number.]
• Qn can be constructed from two copies of Qn–1:
Connect each pair of corrresponding nodes with an edge,
add “0” to the node labels of one copy, “1” to the other
• Qn is isomorphic to the Hasse diagram of the partial
order  Õ  on the set of subsets of  {1, 2, 3, ..., n}
• Qn, properly drawn, is a perspective view of the n-cube,
an object with 2n bounding faces of dimension n–1



Hamiltonian Graphs
A path in a directed or undirected graph is called
Hamiltonian if it visits each vertex exactly once.

A cycle in a graph is called Hamiltonian if it visits each
vertex exactly once (ignoring the fact that the start vertex
is also the final vertex).

A graph is called Hamiltonian if it has a Hamiltonian
cycle, and (less commonly) traceable if it has a
Hamiltonian path.

[blackboard examples]

There is no known efficient way to determine whether a
graph is Hamiltonian (but it hasn’t (yet) been proved that
the problem is inherently inefficient!).

We first investigate some properties that a Hamiltonian
graph must have, then we show some special graphs for
which we can prove Hamiltonianicity.  All these proofs
have the following basic form:  If a graph has enough
edges, it must be Hamiltonian!



Necessary Conditions
Every undirected Hamiltonian graph is connected, and
every directed Hamiltonian graph is strongly connected.

Every vertex of a Hamiltonian graph has degree ≥ 2.

If v is a node in an undirected Hamiltonian graph G and
deg(v) = 2, both edges incident on v are part of every
Hamiltonian cycle of G.

[blackboard examples]

Definition:  An undirected graph G = (V,E) is bipartite if
V can be written as a union V1 » V2 such that for each
edge {x,y} Œ E we have x Œ V1 and y Œ V2 or vice versa.
That is, G is bipartite if its vertices can be divided into
two sets where every edge goes between the sets and
there is no edge within a set.   [blackboard examples]

If  G  is bipartite and Hamiltonian, then the two parts of
G must have the same number of vertices.



Sufficient Conditions I
Every complete undirected graph is Hamiltonian.
Proof:  Just number the vertices any old way, and
consider the cycle v0, v1, . . . , vn, v0.  All edges exist.

A tournament is a directed graph (V,E) that is a complete
undirected nonmultigraph if you “erase the arrowheads”;
i.e., for every distinct pair of vertices x, y Œ V,  exactly
one of  (x,y) and (y,x) is in E.     [blackboard examples]

Every tournament has a (directed) Hamiltonian path.
Proof:  We will show how to take any path and add a
new node to the path; we can then start with any 1-edge
path and repeat this process until every node is added.
So suppose the path is x1, x2, ..., xm and node y isn’t yet
in the path.  If edge (y,x1) exists, add  y before x1 and
we’re done.  Otherwise, edge (x1,y) exists.  If edge (y,x2)
exists, add  y  between x1 and x2 and we’re done.
Otherwise edge (x2,y) exists.  Continue in this way;  if
edge (y,xj) exists add y to the path between xj–1 and xj.
And (y,xj) doesn’t exist for any j, then edge (y,xm)
doesn’t exist, so edge (xm,y) exists and we can add  y  to
the end of the path.  QED.



Sufficient Conditions II
If G = (V,E) is an undirected, loop-free graph, and if for
every pair of distinct nodes x,  y Œ V  it is true that

deg(x) + deg(y)  ≥  n – 1
where n = |V|, then G has a Hamiltonian path.

Lemma:  G is connected.  For if not, pick nodes x and y
in different connected components of G.  Node x has
degree at most cx–1, where cx is the number of nodes in
its component;  similarly, deg(y) ≤ cy–1.  So

deg(x) + deg(y)  ≤ cx + cy– 2  ≤  n – 2
contradicting the hypothesis  deg(x)+deg(y) ≥ n–1.

Just as before, we’ll show how to add a new node to any
simple path to make a longer simple path; then we can
start with any single edge (i.e., simple path of length 1)
and extend it to a Hamiltonian path.

So suppose we have a simple path  x1, x2, . . . , xm.
If x1 is adjacent to any node y  not already on the path,
we can add y before x1.  If xm is adjacent to any node z
not on the path, we can add z after xm.  We need to show
how to extend the path when both of x1 and xm are
adjacent only to nodes already on the path.



(Proof continued)
Claim:  In the case we’re considering,  the graph has a
cycle on the vertices x1, x2, . . . , xm already in the path,
though not necessarily in this order.  (We’ll prove this
claim shortly.)  Now let y be a vertex not already in the
path.  Since G is connected, there is a path from G to
some vertex xp in the path.  So we can add y to the path
by constructing a new path starting at y, going to xp,
around the cycle to xp–1, and we’re done.

We still have to prove that the cycle exists!   If x1 and xm
are adjacent, we’re done.  Even if not, if there’s any p
such that x1 is adjacent to xp and xp–1 is adjacent to xm,
we’re done.  [blackboard picture]  The only way there
can be a problem is if there is no such xp.  But we can
show that this can’t happen, by contradiction.

So suppose that x1 is adjacent only to x2 and to some of
the vertices x3, ..., xm–1, and that xm is adjacent only to
xm–2 and some vertices x1,..., xm–3.   For each vertex that
x1 is adjacent to, there’s a vertex that x1 can’t be adjacent
to, since there is no p such that x1 is adjacent to xp and xm
is adjacent to xp–1.  So together, x1 and xm are adjacent to
at most m–1 vertices, which is less than n–1 (since y, at
least, isn’t on the path), contradicting the hypothesis.



Sufficient Conditions III
If the degree of each vertex of an undirected loop-free
graph G is at least (n–1)/2, where n is the number of
vertices of G, then G has a Hamiltonian path.
[Proof obvious via the preceding theorem.]

If G is undirected and loop-free with n ≥ 3 vertices, and
if  deg(x) + deg(y)  ≥  n  for all nodes x and y that are not
adjacent, then G has a Hamiltonian cycle.   [Proof in
Grimaldi]

If G is undirected and loop-free with n ≥ 3 vertices, and
if deg(x) ≥ n/2 for all vertices x, then G has a
Hamiltonian cycle.  [Proof obvious from the preceding.]

If G is undirected and loop-free with n ≥ 3 vertices and at
least C(n–1,2)+2  edges, then G has a Hamiltonian cycle.
[Proof in Grimaldi.   Intuition:  For  nonadjacent vertices
x and y, G has at most C(n–2, 2) edges that don’t touch
either one.  Then since G has C(n–1,2)+2 edges total, a
little arithmetic shows that x and y must together touch at
least n edges, so a preceding theorem applies.]



Weighted Graphs; TSP
A weighted graph is one in which real numbers, called
weights, are attached either to the nodes or edges or both.
Weights can be used to model lots of things.

For example, let G be a graph whose vertices are cities,
with an edge between two cities if there is a nonstop
flight between them.  The weight of each edge is the cost
of the flight.

The Travelling Salesperson Problem, TSP, is as follows:
Given a complete undirected graph with weighted edges,
find the Hamiltonian cycle with least total weight.
[Blackboard example.  Note that the graph need not be
complete since if we want to leave out any edge we just
assign it an infinite weight.]

No efficient solution to TSP is known, though it has not
been proven that no efficient solution exists.  Resolving
this question guarantees you will be prominently named
in every book on algorithms from now until the end of
time.  Better get started.


