
MATH  22
Lecture U:   11/13/2003

GRAPHS

[A man who] doth rebate and blunt
his natural edge / With profits of the
mind, study and fast.

—Measure for Measure, I:4

The beauty of the world has two
edges, one of laughter, one of
anguish, cutting the heart asunder.

—Virginia Woolf,
A Room of One’s Own
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Administrivia
• http://denenberg.com/LectureU.pdf

• The Grading Scale (pretend we’re back at Lecture A):
[98, 100]         A+
[92.5, 98)        A
[89.5, 92.5)     A–
[86.5, 89.5)     B+
[82.5, 86.5)     B
[79.5, 82.5)     B–
[76.5, 79.5)     C+
[72.5, 76.5)     C
[69.5, 72.5)     C–
[66.5, 69.5)     D+
[62.5, 66.5)     D
[59.5, 62.5)     D–
[0, 59.5)          F

Today:  Graphs, a supremely important tool of discrete
mathematics.   (Another good lecture to take notes,
since lots of stuff will be on the blackboard.)  At first
it will be a little heavy on definitions and a little light
on hard results, skipping G’s examples.



Graphs
A graph is a nonempty set of dots connected by lines.

The dots are called vertices, or nodes, or points.
The lines are called edges, or arcs.
Edges are said to be incident on the nodes they join.
Nodes connected by an edge are adjacent, or neighbors.

In a directed graph the edges have arrowheads on one
end;  an edge starting at node X and ending at node Y
differs from an edge starting at Y and ending at X, and
the graph may contain either independently, or both.
In an undirected graph edges have no arrowheads.

An edge, directed or undirected, from a node X back to
itself is called a self-loop.  We often restrict ourselves to
loop-free graphs, especially in the undirected case.

If “copies” of edges are permitted (e.g., two edges from
X to Y in a directed graph, or two edges between X and Y
in an undirected graph), it’s a multigraph.  If edges can
be incident on more than two nodes, it’s a hypergraph.
We usually assume that graphs are not multigraphs and
we never (in this course) consider hypergraphs.



Walk, Trail, Path, Cycle
If you start at a node, follow an edge to another node,
follow another edge to another node, etc., you have
traced a walk of the graph:

x0, e1, x1, e2, x2, e3, . . . xn–1, en, xn
(The xi are nodes and the ei are edges.)

If the graph is directed, the edges must be traversed in
the direction of the arrowheads.  But nodes can be
revisited and edges can be reused any number of times.

The length of the walk is the number of edges (here n).

If x0 ≠ xn, the walk is called open.  If x0 = xn and n > 0,
the walk is called closed.

If no edge is repeated in the walk, the walk is called a
trail.  If in addition the walk is closed, it’s a circuit.

If no vertex is repeated in the walk, the walk is called
simple, or a path.  If in addition the walk is closed and
n > 2, the walk is a cycle.  A graph with no cycles is
called acyclic.

Theorem:  If there is a walk from X to Y, there is both a
trail and a simple path from X to Y.



Connected Graphs
An undirected graph is called connected if there is a path
between any two of its nodes.

A directed graph is called connected if the graph
produced by erasing the arrowheads is connected.

If, in a directed graph, there is a path between any two
nodes even without erasing the arrowheads, the graph is
called strongly connected.  (This term has no meaning
for undirected graphs.)

Consider only undirected graphs for the moment.  The
“separated pieces” of any graph G are called the
connected components of G.  Each connected component
consists of a subset of the nodes and edges of G that
form a connected graph.

The number of connected components of a graph G is
written k(G).   G is connected if and only if k(G) = 1.

Directed graphs have strongly connected components,
which are much much harder to see.



Formal Definition
A directed graph is an ordered pair (V,E) where V is a
finite, nonempty* set whose elements are called vertices,
and where E is a (possibly empty) set of ordered pairs of
vertices, called edges.   Note that this definition permits
self-loops, but not multigraphs.  Note also that the
elements of V can be anything at all.

An undirected graph is an ordered pair (V,E) where V is
as above and E is a set of subsets of V each of which has
cardinality 2.  This definition does not permit self-loops.

Examples:
( {u, v, w, x, y, z},
   { (v,u), (w,u), (u,w), (w,y), (y,v), (x,x), (y,y) } )

( {u, v, w, x, y, z} ,
{{u,v}, {w,u}, {y,x}, {y,v}, {w,v}, {y,z}, {v,z}, {x,z}})

*Some permit graphs in which V=∅, but we consider such
graphs to be pointless.  [Harary]



Subgraphs
Let  G = (V,E)  be a graph.   Let  V1  be a nonempty
subset of  V and let  E1 be a (possibly empty) subset of  E
such that  G1 = (V1, E1)  is a graph. Then  G1  is called a
subgraph of  G.  [Blackboard examples]

Note that this definition is equally good for directed or
undirected graphs.  By the way, how could E1 Õ E be
otherwise in this definition?

Here is a digression just to fill up the slide:

Theorem:  Let G be an undirected graph with n vertices.
The following conditions on G are equivalent:
• Any two nodes of G are joined by a unique simple path.
• G is both connected and acyclic.
• G is connected and has n–1 edges.
• G is acyclic and has n–1 edges.
• G is connected, but deleting any edge disconnects it.
• G is acyclic, but adding any edge creates a cycle.

An undirected graph that satisfies any of these
conditions, and hence all of them, is called a tree.
(Trees are themselves a huge topic, which we skip, alas.)



Special Subgraphs
If  G = (V,E) is a graph, a spanning subgraph of G is any
graph (V,E1) where E1 Õ E.  That is, a spanning
subgraph of G is any subgraph of G that has the same
vertices as G.  That is, a spanning subgraph of G is just
G with some edges erased.

Theorem:  Graph G = (V,E) has 2|E| spanning subgraphs.

Given a graph G = (V,E) and a nonempty subset V1 of V,
the subgraph of G induced by V1 is the graph  (V1, E1)
where E1 is the subset of E consisting of those edges that
are incident only on nodes of V1.  [Blackboard example]

Said another way:  The subgraph of G = (V,E) induced
by V1 Õ V is the subgraph obtained by erasing from G
those nodes not in V1, and erasing only edges of G that
must be erased because they no longer touch two nodes.
(That is, don’t erase any edges you don’t have to erase.)

Let G = (V,E) be a graph.  If v Œ V, we write G – {v}  to
denote the subgraph of G induced by V – {v}.
If e Œ E, we write  G – {e} to mean G with edge e erased
(is this an induced subgraph?).   We can similarly write
things like  G – {v1, v2, v3}   or   G – {e1, e2}.



Complete Graphs/Degree
A complete undirected graph on n vertices is a graph
(V,E) where  |V| = n  and  {v1, v2} Œ E  for every pair of
distinct nodes v1, v2 Œ V.

Said another way:  A complete graph on n vertices is a
graph with  n  vertices and every possible edge, which is
to say, n(n–1)/2 edges [why?].   We write Kn to denote a
“generic” complete undirected graph on n vertices.
[Blackboard drawing:  K1, K2, K3, K4, K5, maybe K6.]

If v is a vertex of an undirected graph, the degree of v,
written deg(v), is the number of edges incident on v.
In a complete graph Kn each vertex has degree n–1
[NOT n!].    An isolated vertex of a graph is a vertex
with degree 0.   (In a directed graph we speak of the in-
degree and the out-degree of v, with obvious definitions.)

Theorem:  In any undirected graph G, the sum of deg(v)
over all vertices in G is twice the number of edges of G.

A graph in which all vertices have the same degree is
called regular.  All complete graphs are regular.



Graph Complements
Let G = (V,E) be an undirected graph.   The complement
of G, written –G here but usually with a bar over the G,
is the graph (V,E1) where, for any distinct  v1, v2 Œ V,
we have  {v1, v2} Œ E1  if and only if  {v1, v2} œ E.

More simply:  the complement of a graph G is a graph
with the same vertices, and with an edges exactly where
G does not have edges.   [Blackboard examples]

Fact:  If G has n vertices and k edges, its complement has
exactly n(n–1)/2 – k edges.

Fact:  If G has n vertices and is regular of degree k,
then its complement is regular of degree n–k–1.

If G is connected, –G may or may not be connected, but
if G is disconnected then –G is necessarily connected!
Proof:  Suppose G is disconnected and let v and w be any
two vertices of G.  If v and w are in different connected
components of G then there’s an edge between them in
–G.  If v and w are in the same component, pick any
node z in a different component; there’s a path from v to
w in –G by going from v to z to w.



Graph Isomorphism
Suppose G1 is an undirected graph with vertex set
V = {1, 2, 3, 4, 5, 6} and edges {1,5}, {2,6}, and {3,6}.
(Vertex 4 is an isolated vertex of this graph.)

Now let G2 be a graph with vertices {A,B,C,D,E,F} and
edges {E,B}, {A,F}, and {D,A}.   Clearly G1 and G2
aren’t “equal” since their vertex sets aren’t equal.  But just
as clearly they are “the same” in some sense.  How can we
make this precise?

Definition:  Undirected graphs (V1,E1) and (V2, E2) are
called isomorphic if there is a bijection  f : V1 Æ V2  that
preserves adjacency, that is, such that  {v1, v2} Œ  E2  if
and only if  {f(v1), f(v2)} Œ E2.

That is, graphs are isomorphic if there is some way of
putting their vertices in one-to-one correspondence so that
the edges line up as well.   In the example above,
f(1) = E,  f(2) = F,  f(3) = D,  f(4) = C,  f(5) = B,  f(6) = A
is an appropriate bijection.  (There are other appropriate
bijections, and many bijections that aren’t approriate, but
this doesn’t matter;  the graphs are isomorphic if there is at
least one such bijection.)



More on Isomorphism
If G1 and G2 are isomorphic, then they must have the
same number of vertices and the same number of edges.
Moreover, if G1 has k vertices of degree d, then G2 must
also have k vertices of degree d.  And any two
isomorphic graphs have the same number of connected
components.

All these things are easy to check, but can only provide a
negative answer to the question.  (E.g., if two graphs
don’t have the same number of edges, they’re definitely
not isomorphic.)  But two graphs can have the same
number of nodes, edges, components, matching degrees,
etc., and still not be isomorphic.   [Blackboard examples]

Theorem:  If two graphs are both complete graphs on
n vertices, they are isomorphic.   If two graphs both have
n vertices and zero edges, they are isomorphic.  If two
graphs both have n vertices and a single edge, they are
isomorphic.

Theorem:  If two graphs are isomorphic, then so are their
complements.  Moreover, the same bijection
demonstrates the isomorphism.



Eulerian Circuits
Suppose G is an undirected graph (which can be a
multigraph).   A circuit that traverses every edge of G
and visits every node of G is called an Eulerian circuit.
A graph that has an Eulerian circuit is called Eulerian.
[Blackboard picture of the bridges of Königsberg.]

(A circuit that traverses every edge of G must visit every
node unless there are isolated nodes, in which case it
can’t visit every node.  So an Eulerian graph has no
isolated nodes.  Note that a node may be visited any
number of times in the course of an Eulerian circuit.)

Theorem (Euler, 1736):  An undirected graph is Eulerian
if and only if it is connected and has no vertices with odd
degree.

Proof (only if):  Suppose G has an Eulerian circuit
starting and ending at node v.  This circuit visits all
nodes of G, so clearly G is connected.   Each time a node
is visited, we go in one edge and out another, accounting
for 2 edges in the degree;  this shows that all nodes,
except perhaps v, have even degree.   To show it of v,
simply start the circuit in another place!



Euler’s Proof, cont.
(If)  We assume now that G is connected and has vertices
of even degree, and we need to show that G is Eulerian.

Pick any vertex v as a starting point and construct a walk
W that doesn’t reuse edges.  (You can certainly get
started, since G has no isolated vertices!)  As you walk,
you can leave any node that you enter, since each vertex
has even degree.   Therefore,  the walk stops only when
it returns to  v  and no unused edges out of  v  are left.

If W contains all edges of G, we’re done.  Otherwise,
construct a subgraph G1 of G by removing from G all
edges in W and all vertices that become isolated.
Though G1 may not be connected, each of its nodes has
even degree.  Also, since G is connected, some node v1
of G1 must lie on walk W.  So construct a new walk W1
starting at v1 as before; W1 must end eventually at v1.
Splice W1 onto W.

If now W contains all edges of G, we’re done.  Otherwise
we can repeat the process until we have no edges left in
the shrinking subgraph.  QED



Comments on Euler
An Eulerian path in an undirected graph is one that
traverses every edge and visits every node, but isn’t
necessarily a circuit.

If a connected undirected graph with no isolated nodes
has exactly two vertices of odd degree, we can carry out
Euler’s construction starting at one of these vertices.
The first walk W will necessarily end at the other!
But after that, all vertices of the shrinking subgraph have
even degree, and the rest of the construction doesn’t
chang—it still splices everything into W.   This proves
that any connected undirected graph with exactly two
odd vertices has an Eulerian path.

A path in an undirected graph is called Hamiltonian if it
visits every vertex, and an undirected graph is called
Hamiltonian if it contains a Hamiltonian path.  There is
no efficient way to determine whether a given graph is
Hamiltonian.


