
MATH  22
Lecture T:   11/6/2003

EQUIVALENCE
RELATIONS

. . .  in the field of public education
the doctrine of “separate but equal”
has no place.

—Earl Warren, Brown v.
Board of Education of Topeka

All animals are equal, but some
animals are more equal than others.

—George Orwell, Animal Farm
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Administrivia
• http://denenberg.com/LectureT.pdf

• NO CLASS NEXT TUESDAY (Veteran’s Day)

• NOTE CHANGE IN HW 10:  7.4 # 6 and 8

• Meet-the-professors immediately after this class
(we’ll try to quit slightly early if possible)

• Shortened office hours today (as if anyone cares)



Equivalence Relations
A binary relation on a set S is an equivalence relation if
it is reflexive, symmetric, and transitive.

Examples:
“is a sibling of”               [with our simplistic definition]
“is in the same state as”             (a relation on US cities)
“has the same parity as”      (i.e., both even or both odd)
“is the same age as”
“is equal to”

Note that these all examples have an underlying theme of
“sameness”.   This is not a coincidence.

We often use the symbol  ≡  for an anonymous
equivalence relation.

Another important example:  Suppose f : A Æ B is any
function, and define a relation  ≡  on  A  [not on B!] as
follows:   For  x,y Œ A,  define  x ≡ y  if  f(x) = f(y).
Then  ≡   is an equivalence relation, as we can check.
Fact: Every equivalence relation can be written this way!
E.g.,   f : Z Æ {odd, even}  by  f(n) = n’s parity.



Equivalence Classes
Let  S  be a set and   ≡   an equivalence relation on S.
For x Œ S we define [x], the equivalence class of  x, as

[x]   =   { y Œ S  |  x ≡ y }
That is, [x] is the set of all  y  in S that are equivalent to x.
Examples:

Under the “is in the same state as” relation, the
equivalence class of Omaha is the set of all cities in
Nebraska.

Under the “has the same parity as” relation, the
equivalence class of 73 is the set of all odd integers.

Under the “is a sibling of” relation, the equivalence class
of a person is the set of his or her siblings (including
him- or herself, so the set is never empty).

Under the equality relation, every object is in an
equivalence class by itself.

Fact:  Any object x is a member of its own equivalence
class.   That is,  x Œ [x]  for any  x Œ S.
Proof:  Obvious by reflexivity.
Corollary:  An equivalence class is never empty.



Elementary Results
Now suppose x Œ S and y Œ [x], which means that x ≡ y.
What is [y], that is, which elements are equivalent to y?

Suppose z Œ [y], that is, y ≡ z.  By transitivity, x ≡ z.
So if z Œ [y] then z Œ [x], which is to say, [y] Õ [x].

Now let z Œ [x], i.e. x ≡ z.  Then y ≡ x by symmetry, so
by transitivity y ≡ z, i.e. z Œ [y].   This proves [x] Õ [y].

Putting these results together, we have shown that
if y Œ [x], then [y] = [x].

Now let’s go the other way:  Suppose  [x] = [y].  But we
know that y Œ [y], so y Œ [x],  so x ≡ y by definition.
Summarizing this whole mess gives:

x ≡ y  if and only if  [x] = [y]

A critical Theorem:  Suppose that [x] and [y] have any
element at all in common, say  z, so that  x ≡ z and y ≡ z.
By symmetry and transitivity, x ≡ y, which means that
[x] = [y] by the previous result.   We’ve shown that if [x]
and [y] have any elements in common then they’re equal.
Said another way, [x] and [y] are either equal or disjoint.



Partitions
A partition of a set S is a finite or infinite collection
{ S1, S2, . . . }  of nonempty subsets of S such that

– The union of the all the Si is equal to S, and
– The subsets are pairwise disjoint, that is, Si « Sj is

empty for every pair i and j.

Intuitively, a partition chops S up into disjoint pieces that
cover all of S.  Each Si is called a cell of the partition.

The Basic Theorem:  If  S  is a set and  ≡  is an
equivalence relation on S, then the equivalence classes of
≡  are a partition of S.   Moreover, any partition of S
yields an equivalence relation on S.

We’ve proved part of this theorem already by showing
that any two distinct equivalence classes are disjoint.
Their union is all of S since any x Œ S is in one of them.

To prove the last part:   Given a partition { S1, S2, . . . }
of  S,  define a relation  ≡  by   x ≡ y  if  x and y are in the
same Si.   Show that  ≡  is an equivalence relation and
that its equivalence classes are exactly the sets Si.  (Easy)



Examples
• There are 50 equivalence classes of the “is in the same
state as” equivalence relation, one for each state.

• The “has the same parity as” equivalence relation has
two equivalence classes, one containing all the even
integers and one containing all the odd integers.   So we
have  [2] = [8] = [2002]  and  [1]  = [–99] = [221], etc.

• The equivalence classes of the equality relation are
singleton sets.  (This is an extreme example of a
partition; the set S is chopped up as far as possible!)

• Dually, define an equivalence relation ≡ as follows:
x ≡ y  for every  x  and  y  in  S!   This relation has only a
single equivalence class, namely all of S.  This is the
other extreme:  set  S  is chopped up as little as possible.

• Let S be the set of 3-letter “words”, i.e. permutations:
S = { ABC, CAT, TCA, RSQ, QYY, AAA, . . . }

Define an equivalence relation on S by  x ≡ y if  x  is a
rearrangement of y.   The equivalence classes are just the
combinations of letters taken 3 at a time, and there are
|S| / 6 such classes.  I.e., “clumps” were really
equivalence classes!  This technique is used all the time.



An Important Example
The binary operator “mod” takes two integers and
returns the remainder when the first is divided by the
second  (which must be positive).   More formally,
x mod y is the unique r such that 0 ≤ r < y and x = qy + r
for some integer q (Division Theorem).   Examples:
    10 mod 3 = 1        15 mod 6 = 3           12 mod 3 = 0
    10 mod 1 = 0        7 mod 100 = 7       –1 mod 10 = 9
Note that “mod” is an operator (function), not a relation.

Now fix some N > 0  and define a relation as follows:
x ≡ y  if  x mod N = y mod N.   (Another way to define
the same relation is   x ≡ y  if   N | x–y.)   This relation,
known as “equals modulo N”, is an equivalence relation.
For example, suppose N = 8.   Then we have, inter alia,

[1]  =  [9]  =  [–7]  =  { . . . –15, –7, 1, 9, 15, 23, . . . }
[3]  =  [19]  =  { . . . –13, –5, 3, 11, 19, 27, . . . }

[0]  =  [8888]  =  { . . . –24, –16, –8, 0, 8, 16, 24, . . . }

If  N = 2, we have the “same parity” relation, with two
classes.  In general, “equals mod N” has N equivalence
classes, one for each remainder { 0, 1, 2, . . ., N–1 }.
If we permit reals instead of integers, we get infinitely
many equivalence classes, one for each real in [0,N).



[Refinements]
Suppose  P = { S1, S2, . . . } is a partition of S.
A refinement of P is another partition { T1, T2, T3, . . . }
of S with the property that each Ti is a subset of some Sj.

Intuition:  A refinement Q of a partition P is just a finer
chopping-up of S, one that respects the boundaries of P.
Each cell Sj of partition P is either a cell of Q or is itself
partitioned into cells.  So no cells of Q cross the cell
boundaries of P!

Example:  Let R be the relation “equals mod 4” on Z.
The partition induced by this relation has 4 cells, one for
each remainder 0, 1, 2, 3.    Now let R2 be the relation
“equals mod 12”.   This relation induces a partition with
12 cells, each of which is a subset of a cell of R.
(For example, [10] of R2 is a subset of [2] of R.)
But the partition induced by “equals mod 1001”, though
it has lots more cells, is not a refinement of R.

Example:  The relation = induces a partition that refines
any other partition (most extreme chopping-up).



Geometric Examples
Let  S  be the set of points on the line, and define  x1 ≡ x2
if  Îx1˚ = Îx2˚.  What are the equivalence classes of this
relation?  How many equivalence classes are there?

Let  S  be the set of points on the line, and define  x1 ≡ x2
if  Î2x1˚ = Î2x2˚.  What are the equivalence classes of
this relation?  How many are there?  [It’s a refinement.]

Let  S  be the set of points in the plane, and define
z1 ≡ z2  if  z1 and z2  are the same distance from the
origin.  What are the equivalence classes of this relation?
How many are there?

Let  S  be the set of points in the plane, and define
z1 ≡ z2  if  z1 and z2 are less than one unit apart.  What
are the equivalence classes, and how many are there?

Let S be the set of points in the plane, and define
(x1,y1) ≡ (x2,y2)  if  corresponding coordinates have the
same sign, that is, if x1 and x2 are both either positive,
negative, or zero, and the same for y1 and y2.   What are
the equivalence classes, and how many are there?


