MATH 22 Lecture S: 11/4/2003 PARTIAL ORDERS

Erst der Krieg schafft Ordnung. —Brecht, *Mutter Courage*, scene 1

Stand not upon the order of your going. —Shakespeare, *Macbeth*, III.4

Copyright © 2003 Larry Denenberg

Administrivia

- <u>http://denenberg.com/LectureS.pdf</u>
- Reception in Clarkson Room, Thursday 11/6, 4:30–5:30, to discuss next semester's courses (Everyone here will, of course, be late.)
- Comment: Be prepared to take notes today and Thursday. There will be lots of stuff on the blackboard that I can't get into PowerPoint!

This week: Two especially important kinds of binary relations: partial orders and equivalence relations

Only war creates order. —Bertolt Brecht

Review of Relations

A *binary relation* on a nonempty set *S* is a subset of $S \times S$, that is, a binary relation is a set of ordered pairs. All of the following expressions mean the same thing:

x bears relationship R to *y x* and *y* are in the R relationship (in that order!) $(x,y) \in \mathbf{R}$, usually written *x* R *y*

Examples of relations

< = { (4,99), (-1,0), (3,4), (3,22), (3,3233), ... }
"is within 100 miles of" = { (Boston, Medford), ... }
"is a sibling of" = { (Cain, Abel), (Larry, Larry), ... }</pre>

A binary relation R on S is

-*reflexive*, if $x \ge x$ for all $x \in S$

- symmetric, if $x \in X$ y implies $y \in X$ for all $x, y \in S$

- *transitive*, if $x \in R y$ and $y \in R z$ together imply $x \in R z$, for all $x, y, z \in S$

- *antisymmetric*, if $x \ R y$ and $y \ R x$ together imply x = y, for all $x, y \in S$ [this one is new] - *irreflexive*, if $x \ R x$ for *no* $x \in S$ [also new]

Examples

Relation "is within 100 miles of" is reflexive and symmetric, but neither antisymmetric nor transitive.

Relation "is a sibling of" is reflexive [by my definition], symmetric, and transitive, but not antisymmetric.

Relation "is a sister of" is transitive but not reflexive, symmetric, nor antisymmetric.

Relation "loves" has none of the five properties.

Relation \leq is reflexive, transitive, and antisymmetric, but not symmetric. The same is true of relation \subseteq .

Relation < is neither reflexive nor symmetric, but is transitive and also irreflexive. [Is it antisymmetric?]

Relation | (divides) is reflexive, transitive, and (on positive integers) antisymmetric. It's not symmetric.

Relation "equals modulo *n*" is reflexive, transitive, and symmetric, but not antisymmetric.

The empty set, being a subset of $S \times S$, is a relation! It isn't reflexive, but does have the other four properties.

Things to Note

• We're considering only binary relations. But there are also *ternary relations* ("*x* sold *y* to *z*") which are subsets of $S \times S \times S$, *unary relations*, *n-ary relations*, etc.

• All the example relations are "natural" in some way, but a relation can be an *arbitrary* subset of $S \times S$.

• Antisymmetric doesn't mean "not symmetric". A relation can be both (e.g., the relation "=") or neither (e.g., "is a sister of"). Similarly, a relation can be neither reflexive nor irreflexive, though it can't be both.

• Theorem: Suppose relation R on *S* is symmetric and transitive. Then it must be reflexive.

Proof: Let x be any element of S. Since R is symmetric, x R y implies y R x. But by transitivity, x R y and y R x together imply x R x. So we've shown x R x for any x in S, which means that R is reflexive. **This theorem is BOGUS!** What's wrong with the proof? If R is symmetric and transitive but not reflexive; what property must x have if x R x is false?

Partial Orders

Definition: A *partial order* on a set *S* is a binary relation on *S* that is reflexive, transitive, and antisymmetric.

Example: \leq , \subseteq , and I are partial orders.

To get the intuition behind partial order, let's start with a stronger concept: A *total order* on *S* is a partial order R that satisfies the following property, called *trichotomy*: If *x* and *y* are elements of *S*, then either x R y or y R x (or both, in which case x = y by antisymmetry).

A total order (or total ordering) is a relation that lets us arrange the elements of *S* in order, as though on a line. The most common total order that we know is \leq , which arranges numbers in order. Note that < isn't a total order because it's not reflexive.

In a total order, any two elements are related by the order one way or the other (or both). A partial order lacks this property; it's got the other properties of an ordering but may have elements that are *incomparable*, i.e., aren't ordered one way or the other by the relation.

Canonical Example

The first and best example of a partial order is the binary relation "is a subset of", written \subseteq : $A \subseteq B$ if every element of *A* is an element of *B* (and where it's possible that A = B). Transitivity and reflexivity are obvious, antisymmetry is true almost by definition since we know that A = B iff $A \subseteq B$ and $B \subseteq A$.

Note that \subseteq is a relation on *sets*. A and B might be, say, *sets* of integers, but not integers. \subseteq in this case is a relation on $2^{\underline{Z}}$, not on \underline{Z} .

We can use \subseteq to order *some* sets of integers, e.g. $\emptyset \subseteq \{5\} \subseteq \{5,7\} \subseteq \{2,3,5,7\} \subseteq \{\text{primes}\} \subseteq \underline{N} \subseteq \underline{Z}$ But not all sets are comparable! If $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then it's not true that $A \subseteq B$ nor that $B \subseteq A$. These two sets are incomparable under \subseteq .

Definition: A *partially-ordered set*, or *poset*, is a set *S* together with a partial order on *S*. We write a poset as an ordered pair.

Examples: $(2^{\underline{Z}}, \subseteq)$ is a poset. $(2^{\underline{N}}, \subseteq)$ is another poset, as are (\underline{N}, I) and (\underline{Z}, \leq) . But (\underline{Z}, I) is not a poset since "divides" is not antisymmetric on \underline{Z} .

Hasse Diagrams

Let's take $S = \{1, 2, 3\}$ as our underlying set and consider the poset $(2^S, \subseteq)$, that is, the poset consisting of the subsets of *S* under the partial order \subseteq . Since there are only 8 subsets of *S* ($|2^S| = 2^3$, remember?) it's easy to write out the entire partial ordering. [Blackboard]

The picture on the blackboard is called a *Hasse diagram* it shows the (partial) order relationship between the various objects. We always draw a Hasse diagram so that if x R y then y is above x. More examples:

The Hasse diagram for the partial order I on \underline{N} .

The Hasse diagram for a total order is a vertical line. Note that it may or may not have a bottom or a top.

```
The Hasse diagram for the poset
```

```
( {English words}, "is a prefix of" ) which has disconnected pieces.
```

The Hasse diagram for the poset $(\{ digits \}, =), an extreme example of disconnected pieces.$

{Max,min} imal Elements

Definition: Let P = (S,R) be a poset. An element x of S is called *minimal* if the only element y of S such that y R x is y = x. (More formal definition in Grimaldi.) Said another way, x is minimal if, in the Hasse diagram of P, there is no line going downwards from x.

Examples: The empty set is a minimal element of $(2^{S}, \subseteq)$. 1 is a minimal element of (\underline{N}, I) . "are", "we", "having", and "fun"—but not "yet"—are minimal elements of ({words}, prefix of). (\underline{Z} , <) has no minimal elements.

So a poset may have zero, one, or many minimal elements. Theorem: A finite poset always has at least one minimal element. Sketch of proof: Start anywhere and go downwards. In a finite poset you can't do this forever; when you have to stop, you've reached a minimal element. An infinite poset, even one that's not a total order, may not have a minimal element!

A *maximal* element of a poset is one which has no *upward* line in the Hasse diagram. Everything above applies to maximal elements: there may be zero, one, or many, but a finite poset must have at least one. Note that an element of a poset can be both maximal and minimal!

Tops and Bottoms

Let P = (S, R) be a poset. An element $x \in S$ is a *top* (Grimaldi: greatest element) for P if y R x for all $y \in S$. An element $\bot \in S$ is a *bottom* (Grimaldi: least element) for P if $\bot R y$ for all $y \in S$. Intuitively: x is a top if you can follow lines downward from x to every element of S. Similarly for bottom.

Examples: S is a top of $(2^S, \subseteq)$ and \emptyset is a bottom. 1 is a bottom for (\underline{N}, I) and this poset has no top. ({English words}, prefix of) has neither top nor bottom.

A poset can have a top, a bottom, both, or neither. Even a finite poset needn't have a top or a bottom, and even an infinite poset—even a total order!—can have a top, a bottom or both. [Blackboard examples]

A top is always a maximal element, but a maximal element needn't be a top, not even if the maximal element is unique. But a unique maximal element in a *finite* poset is a top. Mutatis mutandis for bottom.

Theorem: A poset can have at most one top. Proof: If x and y are tops, then x R y and y R x, so x = y by antisymmetry. Same for bottoms, of course. Can an element of a poset be both a top and a bottom?

Bounds & Lattices

Suppose (S, R) is a poset and *B* is a subset of S. Then an element $x \in S$ is called a *lower bound* of *B* if x R b for every $b \in B$, that is, if x is below every element of *B*. Similarly, $y \in S$ is an *upper bound* for *B* if y is above every element of *B*.

Note that an upper or lower bound must be comparable to every element of the set it bounds, but needn't be a member of that set. [Examples]

If x is a lower bound of B, then x is a greatest lower bound (glb) of B if y R x for any lower bound y of B. [Similar definition for least upper bound, lub.]

A set may have zero, one, or many lower bounds. Even if it has lower bounds, it need not have a glb. But it can't have more than one glb. [Easy proof] Same for upper bounds and glb, of course. (Duality.)

A poset is called a *lattice* if every pair of elements has both a glb and an lub. [Examples]

Regrettably, we're not doing much with these concepts.

Topological Sort

Let (S, R) be a poset and let T be a total order on S. We say that R is embedded in T if for all x, y in S such that x R y, we also have x T y.

What does this mean? It means that T *preserves the partial order* created by R; if R says that x is below y then T says the same thing. Of course T may say more, since pairs of elements may be incomparable in R but are (perforce) comparable in T.

[Blackboard: $(\{1,2,3\}, \subseteq)$ embedded in a total order.]

Topological sort is the process of embedding R in a total order on *S*, that is, finding a T in which R is embedded.

Why is TS important? Real-world example: Suppose tasks T_1, T_2, \ldots, T_n must be performed respecting ordering constraints (usually called "dependencies"): e.g., T_2 depends on T_4 , T_1 must precede T_7 , etc. The constraints create a partial ordering of the tasks. We need to carry out the tasks according to some total order that respects the partial order of the dependencies.

[Set-theoretically, that is, regarding R and T as sets of ordered pairs, "*embedded in*" just means "*subset of*"!]

Sorting Topologically

Here's how to perform TS on a finite poset. Start with P = (S,R) and an empty total order $Q = (\emptyset, T)$.

[1] Find a maximal element of P; call it x

[2] Remove *x* from *S*. Technically, this means replacing *S* with $S - \{x\}$ and removing from R all ordered pairs containing *x*. Intuitively, it means erasing *x* from the Hasse diagram of P and also erasing all lines downward from *x*. (There aren't any lines upward.)

[3] Add x as the lowest element of Q. Intuitively, this means adding x just below the lowest element of Q and drawing a line from x up to the bottom element of Q. Technically it means adding x to Q and then adding to T a pair (x,y) for every y in Q.
[4] If S is empty, stop. Otherwise go back to step [1].

The idea behind the algorithm is simple: Build Q from the top, at each step adding some maximal element from the current S. The resulting total order is not unique. Proving this algorithm correct would be a good project.

Note that the algorithm satisfies a mathematician but not a computer scientist. As described, the algorithm runs in time $\Theta(n^3)$ since step 1 can be $\Theta(n^2)$. We can do better.

Relations as Matrices

An *0-1 matrix* is, surprisingly, a matrix whose entries are zeroes and ones. We can express a relation R on a finite set *S* as an 0-1 matrix M_R with |S| rows and |S| columns: Each row represents an element of *S* and each column likewise (in the same order!). The entry in row *x*, column *y* is 1 if (*x*,*y*) is in R and is 0 otherwise. [Blackboard example]

We can now express properties of R via its matrix M_R :

R is reflexive if and only if the main diagonal of M_R is all 1s; R is irreflexive if and only if that diagonal is 0s.

R is symmetric if and only if M_R is symmetric around its main diagonal. R is antisymmetric if and only if distinct elements that are "mirror images" in the main diagonal are never both 1.

R is transitive if and only if any element that is 1 in M_R^2 is 1 in M_R (but we're not doing matrix multiplication).

R is a total order if and only if there's a way to label the rows and columns such that M_R is all 1s on and above the main diagonal and is all 0s below.

Counting

Grimaldi loves to count kinds of relations on finite sets. Let's indulge him. Suppose S is a finite set with |S| = n.

How many relations are there on S? $|S \times S| = n^2$ and any subset is a relation. The number of subsets of a set of size n^2 is $2^{(n)(n)}$ because for each of the n^2 ordered pairs we have a two-way choice: in or out.

How many relations on S are reflexive? Now we have no choice about the *n* ordered pairs (x,x); they all must be *in* the relation. We can still choose about the other n^2-n pairs independently. So the answer is $2^{(n)(n-1)}$.

How many relations on S are symmetric? The ordered pairs *other* than (x,x) can be grouped into $(n^2-n)/2$ doubles (x,y) and (y,x). Each double must be in or out. The *n* non-doubles (x,x) can be in or out independently. So the answer is 2 to the power $n + (n^2-n)/2$.

How many relations on S are antisymmetric? Now for each double there are three choices: Both out, one in, or the other in. So the answer is $(2^n)(3^{(n)(n-1)/2})$.

Exercises: How many relations on S are irreflexive? How many are reflexive and symmetric? Reflexive and antisymmetric? Neither reflexive nor irreflexive?