
MATH  22
Lecture S:   11/4/2003

PARTIAL  ORDERS

Erst der Krieg schafft Ordnung.
—Brecht, Mutter Courage, scene 1

Stand not upon the order of your going.
—Shakespeare, Macbeth, III.4
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Administrivia
• http://denenberg.com/LectureS.pdf

• Reception in Clarkson Room, Thursday 11/6,
4:30–5:30, to discuss next semester’s courses
(Everyone here will, of course, be late.)

• Comment:  Be prepared to take notes today and
Thursday.  There will be lots of stuff on the
blackboard that I can’t get into PowerPoint!

This week:  Two especially important kinds of binary
relations:  partial orders and equivalence relations

Only war creates order.
—Bertolt Brecht



Review of Relations
A binary relation on a nonempty set S is a subset of
S ¥¥ S, that is, a binary relation is a set of ordered pairs.
All of the following expressions mean the same thing:

x bears relationship R to y
x and y are in the R relationship (in that order!)
(x,y)  Œ  R, usually written x R y

Examples of relations
 <   =   { (4,99),   (–1,0),   (3,4),   (3,22),  (3, 3233),  . . . }
 “is within 100 miles of”   =   { (Boston, Medford),  . . . }
 “is a sibling of”   =  { (Cain, Abel),  (Larry, Larry), . . . }

A binary relation R on S is
– reflexive,  if  x R x  for all  x Œ S
– symmetric, if  x R y implies  y R x  for all  x,y Œ S
– transitive, if   x R y  and  y R z  together imply
      x R z, for all x,y,z Œ S
– antisymmetric,  if  x R y  and  y R x  together
     imply  x = y,  for all x,y Œ S        [this one is new]
– irreflexive,  if  x R x  for no  x Œ S          [also new]



Examples
Relation  “is within 100 miles of”  is reflexive and
symmetric, but neither antisymmetric nor transitive.

Relation  “is a sibling of” is reflexive [by my definition],
symmetric, and transitive, but not antisymmetric.

Relation  “is a sister of”  is transitive but not reflexive,
symmetric, nor antisymmetric.

Relation “loves” has none of the five properties.

Relation  ≤  is reflexive, transitive, and antisymmetric,
but not symmetric.  The same is true of relation  Õ.

Relation   <   is neither reflexive nor symmetric, but is
transitive and also irreflexive.   [Is it antisymmetric?]

Relation   |   (divides) is reflexive, transitive, and (on
positive integers) antisymmetric.   It’s not symmetric.

Relation “equals modulo n” is reflexive, transitive, and
symmetric, but not antisymmetric.

The empty set, being a subset of  S ¥ S, is a relation!
It isn’t reflexive, but does have the other four properties.



Things to Note
• We’re considering only binary relations.   But there are
also ternary relations (“x sold y to z”) which are subsets
of  S ¥ S ¥ S, unary relations, n-ary relations, etc.

• All the example relations are “natural” in some way,
but a relation can be an arbitrary subset of S ¥ S.

• Antisymmetric doesn’t mean “not symmetric”.
A relation can be both (e.g., the relation “=”)  or neither
(e.g., “is a sister of”).  Similarly, a relation can be neither
reflexive nor irreflexive, though it can’t be both.

• Theorem:  Suppose relation R on S is symmetric and
transitive.  Then it must be reflexive.
Proof:   Let  x  be any element of S.  Since  R  is
symmetric,  x R y  implies  y R x.   But by transitivity,
x R y  and y R x  together imply  x R x.   So we’ve shown
x R x  for any x in S, which means that R is reflexive.
This theorem is BOGUS!   What’s wrong with the
proof?   If  R  is symmetric and transitive but not
reflexive;  what property must  x  have if   x R x  is false?



Partial Orders
Definition:  A partial order on a set S is a binary relation
on S that is reflexive, transitive, and antisymmetric.

Example:  ≤,  Õ,  and  |  are partial orders.

To get the intuition behind partial order, let’s start with a
stronger concept:  A total order on S is a partial order R
that satisfies the following property, called trichotomy:
If x and y are elements of S,  then either  x R y  or  y R x
(or both, in which case  x = y by antisymmetry).

A total order (or total ordering) is a relation that lets us
arrange the elements of S in order, as though on a line.
The most common total order that we know is  ≤, which
arranges numbers in order.  Note that  <  isn’t a total
order because it’s not reflexive.

In a total order, any two elements are related by the order
one way or the other (or both).  A partial order lacks this
property;  it’s got the other properties of an ordering but
may have elements that are incomparable, i.e., aren’t
ordered one way or the other by the relation.



Canonical Example
The first and best example of a partial order is the binary
relation “is a subset of”, written  Õ:   A Õ B if every
element of A is an element of B  (and where it’s possible
that  A = B).  Transitivity and reflexivity are obvious,
antisymmetry is true almost by definition since we know
that   A  =  B  iff   A Õ B and B Õ A.

Note that  Õ  is a relation on sets.   A and B might be,
say, sets of integers, but not integers.   Õ  in this case is a
relation on 2Z, not on Z.

We can use  Õ  to order some sets of integers, e.g.
∅ Õ {5} Õ  {5,7}  Õ  {2,3,5,7}  Õ  {primes}  Õ  N  Õ  Z
But not all sets are comparable!    If  A = {1, 2, 3}  and
B = {3, 4, 5}, then it’s not true that  A Õ B nor that
B Õ A.   These two sets are incomparable under  Õ.

Definition:  A partially-ordered set, or poset, is a set S
together with a partial order on S.  We write a poset as an
ordered pair.
Examples:   (2Z, Õ)  is a poset.   (2N, Õ) is another poset,
as are  (N, |)  and  (Z, ≤).   But (Z, |) is not a poset since
“divides” is not antisymmetric on Z.



Hasse Diagrams
Let’s take  S = {1, 2, 3}  as our underlying set and
consider the poset (2S, Õ), that is, the poset consisting of
the subsets of S under the partial order Õ.   Since there
are only 8 subsets of S  (|2S| = 23, remember?)  it’s easy
to write out the entire partial ordering.       [Blackboard]

The picture on the blackboard is called a Hasse diagram
it shows the (partial) order relationship between the
various objects.  We always draw a Hasse diagram so
that if  x R y then  y  is above  x.   More examples:

The Hasse diagram for the partial order  |  on  N.

The Hasse diagram for a total order is a vertical line.
Note that it may or may not have a bottom or a top.

The Hasse diagram for the poset
( {English words},  “is a prefix of” )

which has disconnected pieces.

The Hasse diagram for the poset   ( {digits} ,  = ), an
extreme example of disconnected pieces.



{Max,min}imal Elements
Definition:  Let  P = (S,R)  be a poset.  An element x of S
is called  minimal  if the only element y of S such that
y R x  is  y = x.   (More formal definition in Grimaldi.)
Said another way,  x  is minimal if, in the Hasse diagram
of P, there is no line going downwards from  x.

Examples: The empty set is a minimal element of (2S,Õ).
1 is a minimal element of  (N, |).   “are”, “we”, “having”,
and “fun”—but not “yet”—are minimal elements of
({words}, prefix of).     (Z, <) has no minimal elements.

So a poset may have zero, one, or many minimal
elements.   Theorem:  A finite poset always has at least
one minimal element.   Sketch of proof:  Start anywhere
and go downwards.  In a finite poset you can’t do this
forever; when you have to stop, you’ve reached a
minimal element.   An infinite poset, even one that’s not
a total order, may not have a minimal element!

A maximal element of a poset is one which has no
upward line in the Hasse diagram.  Everything above
applies to maximal elements:  there may be zero, one, or
many, but a finite poset must have at least one.  Note that
an element of a poset can be both maximal and minimal!



Tops and Bottoms
Let P = (S, R) be a poset.  An element x Œ S is a top
(Grimaldi: greatest element)  for P if  y R x for all y Œ S.
An element  ^̂ Œ S is a bottom  (Grimaldi:  least element)
for P if  ^̂ R y  for all  y Œ S.
Intuitively:   x  is a top if you can follow lines downward
from x to every element of S.  Similarly for bottom.

Examples:  S is a top of  (2S, Õ)  and ∅ is a bottom.
1 is a bottom for  (N, |)  and this poset has no top.
({English words}, prefix of)  has neither top nor bottom.

A poset can have a top, a bottom, both, or neither.
Even a finite poset needn’t have a top or a bottom, and
even an infinite poset—even a total order!—can have a
top, a bottom or both.   [Blackboard examples]

A top is always a maximal element, but a maximal
element needn’t be a top, not even if the maximal
element is unique.  But a unique maximal element in a
finite poset is a top.  Mutatis mutandis for bottom.

Theorem:  A poset can have at most one top.
Proof:  If  x  and  y  are tops, then  x R y  and  y R x,
so  x = y  by antisymmetry.  Same for bottoms, of
course. Can an element of a poset be both a top and a
bottom?



Bounds  &  Lattices
Suppose  (S, R)  is a poset and B is a subset of S.
Then an element x Œ S is called a lower bound of B if
x R b  for every  b Œ B, that is, if  x  is below every
element of B.   Similarly,  y Œ S  is an upper bound for B
if  y  is above every element of B.

Note that an upper or lower bound must be comparable
to every element of the set it bounds, but needn’t be a
member of that set.   [Examples]

If  x  is a lower bound of B, then  x  is a greatest lower
bound (glb) of  B  if  y R x  for any lower bound y of B.
[Similar definition for least upper bound, lub.]

A set may have zero, one, or many lower bounds.
Even if it has lower bounds, it need not have a glb.
But it can’t have more than one glb.  [Easy proof]
Same for upper bounds and glb, of course.  (Duality.)

A poset is called a lattice if every pair of elements has
both a glb and an lub.   [Examples]

Regrettably, we’re not doing much with these concepts.



Topological Sort
Let  (S, R)  be a poset  and let  T  be a total order on S.
We say that  R  is embedded in  T  if  for all x, y in S
such that  x R y,  we also have  x T y.

What does this mean?  It means that T preserves the
partial order created by R;  if  R  says that  x  is below y
then T says the same thing.  Of course T may say more,
since pairs of elements may be incomparable in R but are
(perforce) comparable in T.

[Blackboard:  ({1,2,3}, Õ) embedded in a total order.]

Topological sort is the process of embedding R in a total
order on S, that is, finding a T in which R is embedded.

Why is TS important?  Real-world example:  Suppose
tasks T1, T2, . . ., Tn must be performed respecting
ordering constraints (usually called “dependencies”):
e.g., T2 depends on T4,  T1 must precede T7, etc.
The constraints create a partial ordering of the tasks.
We need to carry out the tasks according to some total
order that respects the partial order of the dependencies.

[Set-theoretically, that is, regarding R and T as sets of
ordered pairs, “embedded in” just means “subset of”!]



Sorting Topologically
Here’s how to perform TS on a finite poset.  Start with
P = (S,R) and an empty total order Q = (∅, T).

[1]  Find a maximal element of P; call it x
[2]  Remove x from S.   Technically, this means
replacing S with S–{x} and removing from R all ordered
pairs containing x.  Intuitively, it means erasing x from
the Hasse diagram of P and also erasing all lines
downward from x.  (There aren’t any lines upward.)
[3]  Add x as the lowest element of Q.  Intuitively, this
means adding x just below the lowest element of Q and
drawing a line from x up to the bottom element of Q.
Technically it means adding x to Q and then adding to T
a pair  (x,y)  for every  y  in Q.
[4]  If  S  is empty, stop.  Otherwise go back to step [1].

The idea behind the algorithm is simple:  Build Q from
the top, at each step adding some maximal element from
the current S.  The resulting total order is not unique.
Proving this algorithm correct would be a good project.

Note that the algorithm satisfies a mathematician but not
a computer scientist.  As described, the algorithm runs in
time Q(n3) since step 1 can be Q(n2).   We can do better.



Relations as Matrices
An 0-1 matrix is, surprisingly, a matrix whose entries are
zeroes and ones.  We can express a relation R on a finite
set S as an 0-1 matrix MR with |S| rows and |S| columns:
Each row represents an element of S and each column
likewise (in the same order!).  The entry in row x,
column y  is 1 if (x,y) is in R and is 0 otherwise.
[Blackboard example]

We can now express properties of R via its matrix MR:

R is reflexive if and only if the main diagonal of MR is
all 1s;  R is irreflexive if and only if that diagonal is 0s.

R is symmetric if and only if MR is symmetric around its
main diagonal.   R is antisymmetric if and only if distinct
elements that are “mirror images” in the main diagonal
are never both 1.

R is transitive if and only if any element that is 1 in MR
2

is 1 in MR (but we’re not doing matrix multiplication).

R is a total order if and only if there’s a way to label the
rows and columns such that MR is all 1s on and above
the main diagonal and is all 0s below.



Counting
Grimaldi loves to count kinds of relations on finite sets.
Let’s indulge him.   Suppose S is a finite set with |S| = n.

How many relations are there on S?   |S ¥ S| = n2  and
any subset is a relation.  The number of subsets of a set
of size  n2  is  2(n)(n)  because for each of the  n2  ordered
pairs we have a two-way choice:  in or out.

How many relations on S are reflexive?   Now we have
no choice about the  n  ordered pairs (x,x);  they all must
be in the relation.  We can still choose about the other
 n2–n  pairs independently.  So the answer is 2(n)(n–1) .

How many relations on S are symmetric?   The ordered
pairs other than (x,x) can be grouped into (n2–n)/2
doubles (x,y) and (y,x).   Each double must be in or out.
The n non-doubles  (x,x) can be in or out independently.
So the answer is  2  to the power  n + (n2–n)/2.

How many relations on S are antisymmetric?  Now for
each double there are three choices:  Both out, one in, or
the other in.  So the answer is (2n)(3(n)(n–1)/2).

Exercises:  How many relations on S are irreflexive?
How many are reflexive and symmetric?   Reflexive and
antisymmetric?   Neither reflexive nor irreflexive?


