# MATH 22 <br> <br> Lecture S: 11/4/2003 <br> <br> Lecture S: 11/4/2003 <br> PARTIAL ORDERS 

# Erst der Krieg schafft Ordnung. —Brecht, Mutter Courage, scene 1 

Stand not upon the order of your going.
-Shakespeare, Macbeth, III. 4

## Administrivia

- http://denenberg.com/LectureS.pdf
- Reception in Clarkson Room, Thursday 11/6, 4:30-5:30, to discuss next semester's courses (Everyone here will, of course, be late.)
- Comment: Be prepared to take notes today and Thursday. There will be lots of stuff on the blackboard that I can't get into PowerPoint!

This week: Two especially important kinds of binary relations: partial orders and equivalence relations

Only war creates order.
-Bertolt Brecht

## Review of Relations

A binary relation on a nonempty set $S$ is a subset of $S \square S$, that is, a binary relation is a set of ordered pairs. All of the following expressions mean the same thing: $x$ bears relationship R to $y$ $x$ and $y$ are in the R relationship (in that order!) $(x, y) \square \mathrm{R}$, usually written $x \mathrm{R} y$

Examples of relations
$<=\{(4,99),(-1,0),(3,4),(3,22),(3,3233), \ldots\}$
"is within 100 miles of" $=\{($ Boston, Medford), . . $\}$
"is a sibling of" $=\{$ (Cain, Abel), (Larry, Larry), . . $\}$

A binary relation R on $S$ is

- reflexive, if $x \mathrm{R} x$ for all $x \square S$
- symmetric, if $x \mathrm{R} y$ implies $y \mathrm{R} x$ for all $x, y \square S$
- transitive, if $x \mathrm{R} y$ and $\mathrm{y} \mathrm{R} z$ together imply $x \mathrm{R} z$, for all $x, y, z \square S$
- antisymmetric, if $x \mathrm{R} y$ and $y \mathrm{R} x$ together imply $x=y$, for all $x, y \square S \quad$ [this one is new]
- irreflexive, if $x \mathrm{R} x$ for no $x \square S \quad$ [also new]


## Examples

Relation "is within 100 miles of" is reflexive and symmetric, but neither antisymmetric nor transitive.

Relation "is a sibling of" is reflexive [by my definition], symmetric, and transitive, but not antisymmetric.

Relation "is a sister of" is transitive but not reflexive, symmetric, nor antisymmetric.

Relation "loves" has none of the five properties.
Relation $\leq$ is reflexive, transitive, and antisymmetric, but not symmetric. The same is true of relation $\square$.

Relation < is neither reflexive nor symmetric, but is transitive and also irreflexive. [Is it antisymmetric?]

Relation I (divides) is reflexive, transitive, and (on positive integers) antisymmetric. It's not symmetric.

Relation "equals modulo $n$ " is reflexive, transitive, and symmetric, but not antisymmetric.

The empty set, being a subset of $S \square S$, is a relation! It isn't reflexive, but does have the other four properties.

## Things to Note

- We're considering only binary relations. But there are also ternary relations (" $x$ sold $y$ to $z$ ") which are subsets of $S \square S \square S$, unary relations, $n$-ary relations, etc.
- All the example relations are "natural" in some way, but a relation can be an arbitrary subset of $S \square S$.
- Antisymmetric doesn't mean "not symmetric". A relation can be both (e.g., the relation " $=$ ") or neither (e.g., "is a sister of"). Similarly, a relation can be neither reflexive nor irreflexive, though it can't be both.
- Theorem: Suppose relation R on $S$ is symmetric and transitive. Then it must be reflexive.
Proof: Let $x$ be any element of $S$. Since R is symmetric, $x \mathrm{R} y$ implies $y \mathrm{R} x$. But by transitivity, $x \mathrm{R} y$ and $y \mathrm{R} x$ together imply $x \mathrm{R} x$. So we've shown $x \mathrm{R} x$ for any $x$ in $S$, which means that R is reflexive. This theorem is BOGUS! What's wrong with the proof? If R is symmetric and transitive but not reflexive; what property must $x$ have if $x \mathrm{R} x$ is false?


## Partial Orders

Definition: A partial order on a set $S$ is a binary relation on $S$ that is reflexive, transitive, and antisymmetric.

Example: $\leq, \square$, and I are partial orders.

To get the intuition behind partial order, let's start with a stronger concept: A total order on $S$ is a partial order R that satisfies the following property, called trichotomy: If $x$ and $y$ are elements of $S$, then either $x \mathrm{R} y$ or $y \mathrm{R} x$ (or both, in which case $x=y$ by antisymmetry).

A total order (or total ordering) is a relation that lets us arrange the elements of $S$ in order, as though on a line. The most common total order that we know is $\leq$, which arranges numbers in order. Note that $<$ isn't a total order because it's not reflexive.

In a total order, any two elements are related by the order one way or the other (or both). A partial order lacks this property; it's got the other properties of an ordering but may have elements that are incomparable, i.e., aren't ordered one way or the other by the relation.

## Canonical Example

The first and best example of a partial order is the binary relation "is a subset of", written $\square: A \square B$ if every element of $A$ is an element of $B$ (and where it's possible that $A=B$ ). Transitivity and reflexivity are obvious, antisymmetry is true almost by definition since we know that $A=B$ iff $A \square B$ and $B \square A$.

Note that $\square$ is a relation on sets. $A$ and $B$ might be, say, sets of integers, but not integers. $\square$ in this case is a relation on $2 \underline{\underline{Z}}$, not on $\underline{Z}$.

We can use $\square$ to order some sets of integers, e.g. $\varnothing \square\{5\} \square\{5,7\} \square\{2,3,5,7\} \square$ \{primes $\} \square \underline{N} \square \underline{Z}$ But not all sets are comparable! If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then it's not true that $A \square B$ nor that $B \square A$. These two sets are incomparable under $\square$.

Definition: A partially-ordered set, or poset, is a set $S$ together with a partial order on $S$. We write a poset as an ordered pair.
Examples: $(2 \underline{\underline{Z}}, \square)$ is a poset. ( $2 \underline{\underline{N}}, \square$ ) is another poset, as are $(\underline{\boldsymbol{N}}, \boldsymbol{I})$ and $(\underline{\boldsymbol{Z}}, \leq)$. But $(\underline{\boldsymbol{Z}}, \mathrm{I})$ is not a poset since "divides" is not antisymmetric on $\underline{Z}$.

## Hasse Diagrams

Let's take $S=\{1,2,3\}$ as our underlying set and consider the poset ( $2^{S}, \square$ ), that is, the poset consisting of the subsets of $S$ under the partial order $\square$. Since there are only 8 subsets of $S\left(\left|2^{S}\right|=2^{3}\right.$, remember?) it's easy to write out the entire partial ordering. [Blackboard]

The picture on the blackboard is called a Hasse diagram it shows the (partial) order relationship between the various objects. We always draw a Hasse diagram so that if $x \mathrm{R} y$ then $y$ is above $x$. More examples:

The Hasse diagram for the partial order I on $\underline{N}$.

The Hasse diagram for a total order is a vertical line. Note that it may or may not have a bottom or a top.

The Hasse diagram for the poset
( $\{$ English words $\}$, "is a prefix of" ) which has disconnected pieces.

The Hasse diagram for the poset ( $\{$ digits $\},=$ ), an extreme example of disconnected pieces.

## \{Max,min\}imal Elements

Definition: Let $\mathrm{P}=(S, \mathrm{R})$ be a poset. An element $x$ of $S$ is called minimal if the only element $y$ of $S$ such that $y \mathrm{R} x$ is $y=x$. (More formal definition in Grimaldi.) Said another way, $x$ is minimal if, in the Hasse diagram of P , there is no line going downwards from $x$.

Examples: The empty set is a minimal element of $\left(2^{\mathrm{S}}, \square\right)$. 1 is a minimal element of $(\underline{\boldsymbol{N}}, \mathbf{I})$. "are", "we", "having", and "fun"-but not "yet"-are minimal elements of (\{words\}, prefix of). ( $\underline{\boldsymbol{Z}},<$ ) has no minimal elements.

So a poset may have zero, one, or many minimal elements. Theorem: A finite poset always has at least one minimal element. Sketch of proof: Start anywhere and go downwards. In a finite poset you can't do this forever; when you have to stop, you've reached a minimal element. An infinite poset, even one that's not a total order, may not have a minimal element!

A maximal element of a poset is one which has no upward line in the Hasse diagram. Everything above applies to maximal elements: there may be zero, one, or many, but a finite poset must have at least one. Note that an element of a poset can be both maximal and minimal!

## Tops and Bottoms

Let $\mathrm{P}=(\mathrm{S}, \mathrm{R})$ be a poset. An element $x \square S$ is a top (Grimaldi: greatest element) for P if $y \mathrm{R} x$ for all $y] S$. An element प् $S$ is a bottom (Grimaldi: least element) for P if $\mathrm{R} \mathrm{R} y$ for all $y \square S$.
Intuitively: $x$ is a top if you can follow lines downward from $x$ to every element of S. Similarly for bottom.

Examples: $S$ is a top of $\left(2^{S}, \square\right)$ and $\varnothing$ is a bottom. 1 is a bottom for ( $\boldsymbol{N}, \mathrm{I}$ ) and this poset has no top. (\{English words\}, prefix of) has neither top nor bottom.

A poset can have a top, a bottom, both, or neither. Even a finite poset needn't have a top or a bottom, and even an infinite poset - even a total order! - can have a top, a bottom or both. [Blackboard examples]

A top is always a maximal element, but a maximal element needn't be a top, not even if the maximal element is unique. But a unique maximal element in a finite poset is a top. Mutatis mutandis for bottom.

Theorem: A poset can have at most one top. Proof: If $x$ and $y$ are tops, then $x \mathrm{R} y$ and $y \mathrm{R} x$, so $x=y$ by antisymmetry. Same for bottoms, of course. Can an element of a poset be both a top and a bottom?

## Bounds \& Lattices

Suppose ( $S, \mathrm{R}$ ) is a poset and $B$ is a subset of S . Then an element $x \square S$ is called a lower bound of $B$ if $x \mathrm{R} b$ for every $b \square \mathrm{~B}$, that is, if $x$ is below every element of $B$. Similarly, $y \square S$ is an upper bound for $B$ if $y$ is above every element of $B$.

Note that an upper or lower bound must be comparable to every element of the set it bounds, but needn't be a member of that set. [Examples]

If $x$ is a lower bound of $B$, then $x$ is a greatest lower bound $(g l b)$ of $B$ if $y \mathrm{R} x$ for any lower bound $y$ of $B$. [Similar definition for least upper bound, lub.]

A set may have zero, one, or many lower bounds. Even if it has lower bounds, it need not have a glb. But it can't have more than one glb. [Easy proof] Same for upper bounds and glb, of course. (Duality.)

A poset is called a lattice if every pair of elements has both a glb and an lub. [Examples]

Regrettably, we're not doing much with these concepts.

## Topological Sort

Let $(S, \mathrm{R})$ be a poset and let T be a total order on $S$. We say that R is embedded in T if for all $x, y$ in $S$ such that $x \mathrm{R} y$, we also have $x \mathrm{~T} y$.

What does this mean? It means that T preserves the partial order created by R ; if R says that $x$ is below $y$ then T says the same thing. Of course T may say more, since pairs of elements may be incomparable in R but are (perforce) comparable in T .
[Blackboard: (\{1,2,3\}, $\square$ ) embedded in a total order.]

Topological sort is the process of embedding R in a total order on $S$, that is, finding a T in which R is embedded.

Why is TS important? Real-world example: Suppose tasks $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}$ must be performed respecting ordering constraints (usually called "dependencies"): e.g., $\mathrm{T}_{2}$ depends on $\mathrm{T}_{4}, \mathrm{~T}_{1}$ must precede $\mathrm{T}_{7}$, etc. The constraints create a partial ordering of the tasks. We need to carry out the tasks according to some total order that respects the partial order of the dependencies.
[Set-theoretically, that is, regarding R and T as sets of ordered pairs, "embedded in" just means "subset of"!]

## Sorting Topologically

Here's how to perform TS on a finite poset. Start with $\mathrm{P}=(S, \mathrm{R})$ and an empty total order $\mathrm{Q}=(\varnothing, \mathrm{T})$.
[1] Find a maximal element of P ; call it $x$
[2] Remove $x$ from $S$. Technically, this means replacing $S$ with $S-\{x\}$ and removing from R all ordered pairs containing $x$. Intuitively, it means erasing $x$ from the Hasse diagram of P and also erasing all lines downward from $x$. (There aren't any lines upward.) [3] Add $x$ as the lowest element of Q . Intuitively, this means adding $x$ just below the lowest element of Q and drawing a line from $x$ up to the bottom element of Q . Technically it means adding $x$ to Q and then adding to T a pair $(x, y)$ for every $y$ in Q .
[4] If $S$ is empty, stop. Otherwise go back to step [1].

The idea behind the algorithm is simple: Build Q from the top, at each step adding some maximal element from the current S . The resulting total order is not unique. Proving this algorithm correct would be a good project.

Note that the algorithm satisfies a mathematician but not a computer scientist. As described, the algorithm runs in time $\square\left(n^{3}\right)$ since step 1 can be $\square\left(n^{2}\right)$. We can do better.

## Relations as Matrices

An 0-1 matrix is, surprisingly, a matrix whose entries are zeroes and ones. We can express a relation R on a finite set $S$ as an $0-1$ matrix $\mathrm{M}_{\mathrm{R}}$ with $|S|$ rows and $|S|$ columns: Each row represents an element of $S$ and each column likewise (in the same order!). The entry in row $x$, column $y$ is 1 if $(x, y)$ is in R and is 0 otherwise. [Blackboard example]

We can now express properties of $R$ via its matrix $M_{R}$ :
$R$ is reflexive if and only if the main diagonal of $M_{R}$ is all $1 \mathrm{~s} ; \mathrm{R}$ is irreflexive if and only if that diagonal is 0 s .
$R$ is symmetric if and only if $M_{R}$ is symmetric around its main diagonal. R is antisymmetric if and only if distinct elements that are "mirror images" in the main diagonal are never both 1 .
$R$ is transitive if and only if any element that is 1 in $M_{R}{ }^{2}$ is 1 in $\mathrm{M}_{\mathrm{R}}$ (but we're not doing matrix multiplication).
$R$ is a total order if and only if there's a way to label the rows and columns such that $\mathrm{M}_{\mathrm{R}}$ is all 1 s on and above the main diagonal and is all 0 s below.

## Counting

Grimaldi loves to count kinds of relations on finite sets. Let's indulge him. Suppose $S$ is a finite set with $|S|=n$.

How many relations are there on $S ? \quad|S \square S|=n^{2}$ and any subset is a relation. The number of subsets of a set of size $n^{2}$ is $2^{(n)(n)}$ because for each of the $n^{2}$ ordered pairs we have a two-way choice: in or out.

How many relations on $S$ are reflexive? Now we have no choice about the $n$ ordered pairs ( $x, x$ ); they all must be in the relation. We can still choose about the other $n^{2}-n$ pairs independently. So the answer is $2^{(n)(n-1)}$.

How many relations on S are symmetric? The ordered pairs other than $(x, x)$ can be grouped into $\left(n^{2}-n\right) / 2$ doubles $(x, y)$ and $(y, x)$. Each double must be in or out. The $n$ non-doubles $(x, x)$ can be in or out independently. So the answer is 2 to the power $n+\left(n^{2}-n\right) / 2$.

How many relations on $S$ are antisymmetric? Now for each double there are three choices: Both out, one in, or the other in. So the answer is $\left(2^{n}\right)\left(3^{(n)(n-1) / 2}\right)$.

Exercises: How many relations on S are irreflexive? How many are reflexive and symmetric? Reflexive and antisymmetric? Neither reflexive nor irreflexive?

