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THEOREM
of  ARITHMETIC

You must remember this,
A kiss is still a kiss,
A sigh is just a sigh;
The fundamental things apply,
As time goes by.

—Herman Hupfeld
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Administrivia
• http://denenberg.com/LectureR.pdf

• Exam 2
– Statistics
– Problem 1  [Grimaldi 5.8 #1d]
– Problem 2
– Problem 3  [Grimaldi 4.1 #23b, cf Lecture P]
– Problem 4  [Grimaldi 4.1 #1c]
– Problem 5 [half of Grimaldi 3.2 #6b, cf Lecture P]
– Problem 6  [Grimaldi 3.4 #8, cf Lecture P]

(ordered, unordered, mathematician’s solutions)
– Problem 7  [Grimaldi 5.2 #12, cf Lecture P]
– Problem 8 [Grimaldi 5.4 #6 simplified, cf Lect. P]
– Problem 9  [Grimaldi 5.6 #8b, cf Lecture P]
– Problem 10  [Grimaldi 5.6 #21]

• Next exam:  Monday November 24

• Reception in Clarkson Room, Thursday 11/6,
4:30–5:30, to discuss next semester’s courses



Review
• Divisibility and properties of the  |  relation

• Primes and the infinity of primes

• The Division Theorem:
If x and y are integers with  y > 0, then there exist unique
integers  q  and  r  such that  x = qy +r  with  0 ≤ r < y.

• Application:  Change of (positive) base

• GCD:  Definition, existence, uniqueness

• Properties of the GCD and of the binary operation gcd

• Finding the GCD:  The Euclidean Algorithm

• Correctness and complexity of the Euclidean
Algorithm

• Applications of GCD as smallest linear combination
[Grimaldi page 235]   (can’t really do this justice!)

• LCM:  Definition and properties



F. T. of A.
The Fundamental Theorem of Arithmetic:
Every integer greater than 1 can be written as a product
of primes in exactly one way.

Note that order doesn’t matter when counting products:
30  =  2*3*5  = 3*5*2  = 5*2*3 etc. is just 1 product.
[Blackboard demonstration of the canonical way to write
down the prime factorization of any number N > 1.]

We have already proved this theorem (in Project 4)
except for the “in exactly one way” piece.

(By the way, do we know what the Fundamental
Theorem of Algebra is?  The Fundamental Theorem of
Calculus?)

Just something to slip in:  Grimaldi introduces  P
notation in this section, but we’ve all seen it before.
Recall that  P  is just like  S  except that you multiply
instead of adding.

Another note:  Grimaldi proves here that ÷2 is irrational.
We did this as a first example of proof by contradiction.
Review it!



Proof of Uniqueness
Lemma:    Suppose  x  and  y  are positive integers and
p  is a prime.   Then if  p  divides  xy,  it divides  x  or  y
(or both).   [Proof in Grimaldi]

Lemma:    Suppose  x1, x2, . . ., xn  are positive integers
and  p  is a prime.   Then if  p  divides the product of the
xi  it must divide one of them.   [Proof by Mathematical
Induction, using the first Lemma.]

Proof of the uniqueness part of the F.T.of A.:
By Mathematical Induction (strong form).
Base case:   2 has a unique prime factorization,
Inductive case:  Assuming that all numbers up to N–1
have a unique prime factorization, we must prove that N
does as well.   So suppose otherwise, i.e. suppose that N
has two prime factorizations.

Let p be any prime in the first factorization.  So  p | N.
By the Lemma,  p  must divide one of the primes in the
second factorization.   But if  p  divides a prime number,
that number must be p.   So  p  appears at least once in
each factorization.   If we remove one factor of  p  from
each factorization, the result is two factorizations of N/p.
By the Induction Hypothesis these are the same.  So an
additional factor of  p  yields identical factorizations.



How Many Divisors?
How many (positive) divisors does  N  have?

Write  N  in its unique prime factorization paqb...sd

where  p, q, . . ., s  are prime.   Then any divisor of  N
has the form  pxqy...rz  where  0 ≤ x ≤ a,  0 ≤ y ≤ b, . . .,
0 ≤ z ≤ d.

Said another way:   To make a divisor of N we form a
product consisting of at most  a  factors of p,  at most
b  factors of  q, etc.
So there are (a+1) ways to choose the number of factors
of  p  (namely 0, 1, 2, . . . a),  there are (b+1) ways to
choose the number of factors of  q, etc.  The total
number of divisors of N is therefore  (a+1)(b+1)...(d+1).

Note that these divisors of N include 1  (choose 0 factors
of each prime!) and N itself (choose all  a  factors of  p,
all  b  factors of  q, etc.).

Example [from G]:  29338848000 =  28355373111, so it
must have (8+1)(5+1)(3+1)(3+1)(1+1) = 1728 positive
divisors, including itself and 1.



Square Divisors
How many divisors of  N  are perfect squares?

A number is a perfect square if and only if each of the
exponents in its prime factorization is even.   (Obvious?)

So to build a divisor of  N  that’s a perfect square, we can
take  0, 2, 4, . . ., or 2Îa/2˚  factors of  p.   The number of
choices is no longer  a+1 but rather  Îa/2˚+1.   And the
same applies to the other primes in the factorization of N.
So  N  has

 (Îa/2˚ + 1)(Îb/2˚ + 1) . . . (Îd/2˚ + 1)
divisors that are perfect squares.

Example:  The number of perfect square divisors of
29338848000  is  (4+1)(2+1)(1+1)(1+1)(0+1) = 60.

We can do lots of other things by counting choices for
number of prime factors.  Grimaldi, for example, counts
divisors that are multiples of 360.   Note also that a
number is a perfect cube if and only if each of the
exponents in its prime factorization is divisible by three.
Lots of good potential for problems here.



A Small Result
The product of three consecutive positive integers is
never a perfect square.

Proof:   Suppose to the contrary that
 m(m+1)(m+2)  =  n2

for positive integers  m  and  n.

Let  p  be any prime divisor of  m+1.   Then  p  can’t be a
divisor of  m  since  m  and  m+1  are relatively prime.
(Any two consecutive integers are relatively prime.)
Similarly,  p  can’t be a divisor of  m+2.

Now  p  clearly divides n2, and must appear in n2 an
even number of times.   Therefore it must appear in m+1
an even number of times, since it doesn’t appear in  m  or
in  m+2.   This means that  m+1  must be a square, and
therefore the product  m(m+2) must be a square since it’s
the quotient of two squares.

But   m2   <   m(m+2)  <  m2 + 2m + 1  =  (m+1)2.
So the square root of  m(m+2) must be strictly between
m  and  m+1, which means  m(m+2)  can’t be a perfect
square, and we have a contradiction.



GCD  and  LCM
When one number is a multiple of another, the smaller is
their GCD and the larger is their LCM.   If both numbers
are powers of a single prime, e.g.  8 = 23  and  32 = 25,
we can just take the min or max of the exponent:  we get
gcd(23,25)  = 2min(3,5) = 23 = 8,  and doing the same
thing with max gives lcm(23,25) = 32.   In general,

gcd(2x,2y)  =  2min(x,y)      and    lcm(2x,2y)  =  2max(x,y)

and of course this is true for any prime, not just 2.

Even more generally, we can do this with arbitrary
numbers by taking the primes separately:

gcd(2a3b5c..., 2x3y5z...)   =   2min(a,x)3min(b,y)5min(c,z)...
lcm(2a3b5c..., 2x3y5z...)   =   2max(a,x)3max(b,y)5max(c,z)...

[Blackboard examples]

Proving these is a good exercise in thinking about prime
factors and what you can do with them.

If we multiple the left and right sides of this identity and
use the fact that  a+b = max(a,b)+min(a,b), we get

gcd(2a3b..., 2x3y...)lcm(2a3b..., 2x3y...)  =  2a+x3b+y...
and we have proved that  gcd(x,y)lcm(x,y)  =  xy.


