
MATH  22
Lecture O:   10/21/2003

FUNCTIONS:
ORDER OF GROWTH

The old order changeth,
yielding place to new.
—Tennyson, Idylls of the King

Men are but children of a larger
growth.

—Dryden, All for Love,
Act 4, scene 1
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Administrivia
• http://denenberg.com/LectureO.pdf

• Exam: Monday 10/27, Robinson 253.
Anyone know when?

• Suggestions for review questions still accepted

• Comment on the function sin2q

• Project 4:  Grader pounds me,  I pound you:
This is your last warning!

– You can’t manipulate non-equations.
– “if p, then q”  is always true when p is false.

Today:  Growth rates of functions, preceded by awesome
motivational discussion about problems and their
algorithms



Problems & Algorithms
Today we study growth rates of functions.   Why?

A problem is something that we solve with an algorithm.
A problem consists of instances;  an algorithm for the
problem accepts an instance as input.  Examples:

SORTING is the problem of putting numbers in order.
An instance of SORTING is a sequence of numbers.
An algorithm that solves SORTING takes such a
sequence as input and outputs the sorted sequence.

FACTORING is the problem of finding prime factors.
An instance of FACTORING is a single number.
An algorithm that solves FACTORING takes a number
N as input and outputs the factors of N.

VALIDITY is the problem of determining whether a
propositional formula, e.g.  pq ⁄ (–r) ÆÆ q(r ⁄ s), is
valid, that is, true for any interpretation of its variables.
An instance of VALIDITY is a propositional formula.
An algorithm that solves VALIDITY takes such a
formula as input, and outputs either “yes” or “no”.

(The Twin Prime Conjecture is not a problem since it
doesn’t have instances.  No individual question is a
problem in this “computer science” sense.)



Problem Complexity
Some problems seem to be harder than others:
SORTING seems easier than FACTORING, but harder
than MAXIMUM  (i.e., finding the largest number of a
sequence).   But how do FACTORING and VALIDITY
compare?   How do we make these ideas precise?

Answer:  We define the “difficulty” of a problem H,
which we call the computational complexity of H, as the
difficulty of the best algorithm that solves H.

Pretty lousy definition, eh?  It just raises (not “begs”!!)
the question:  What is the difficulty of an algorithm?
And what is “best”, that is, how do we compare
algorithm difficulties?   Today we take up tools we need
to answer these questions.

[Note:  It’s usually easy to measure the difficulty of an
algorithm.   But how do we know when you’ve got the
best algorithm for a problem?  We must prove that no
better algorithm exists, and this is often very hard.  There
are many problems for which we’re unsure of the best
algorithm, including FACTORING and VALIDITY!]



Algorithm Complexity
The complexity of an algorithm is defined by the amount
of resources it uses.  Usually the resource we care about
is time:   Difficult problems take longer to solve.

How can we measure the time used by an algorithm?
The time depends on the particular machine and the
efficiency of the coding.  Most critically, it depends on
the particular instance of the problem!  (It usually takes
more time to sort 1000000 numbers than to sort 10000.
But it might take less time if the 1000000 numbers
happen to be in order already, as they could be.)
Here’s how we cope with these issues:

0.  We don’t measure time in seconds, but rather in basic
operations or program steps that are approximately
equivalent and generally computer-independent.  We’ll
see more on this point next lecture.

1.  Every instance of a problem gets assigned a size.   For
example, the size of an instance of  SORTING might be
the number of numbers to be sorted;  for an instance of
FACTORING it might be the number of digits in the
number to be factored.   Having assigned sizes . . .



Complexity, continued
2.  We measure the time an algorithm takes as a function
of the size of the input.   That is, an algorithm’s
complexity is not a number, but a function.   If   A   is an
algorithm, its complexity is a function  fA(n)  that tells
how much time A requires on instances (inputs) of size n.

3.  But algorithms usually take varying amounts of time
on different inputs, even of the same size.   (Some 1000-
digit numbers are easier to factor than others!)   So  we
define the complexity function to measure worst-case
performance.  That is, the complexity of algorithm A is a
function fA such that fA(n) is the greatest possible
amount of time required for A to solve a problem
instance of size n.   (Sometimes we use average case.)

4.  We don’t worry about time used on “small” inputs,
which take little time anyway—we can always handle
any finite number of instances as special cases.   So we
compare complexities only “at infinity”, that is, for large
inputs, though we can concoct cases where this is absurd.

5.  Constant factors don’t matter:  Two algorithms whose
time differs by a factor of 2 (say) are the same.  Special-
case hardware or new technology can always increase
speeds by constant factors, so ignoring them makes us
technology-independent.  (This can also be absurd.)



The Story of O
With these ideas in mind we make the following
definition:  Let g be a function from positive numbers
(e.g. Z+ or  R+) to positive numbers.  We define O(g) to
be the set of all functions  f  for which the following
condition holds:  there exists some integer N and some
positive constant c such that  f(n) ≤ cg(n)  for all  n > N.
It’s our job today to understand this completely.

First: For f to be in O(g) it’s not required that f(n) ≤ g(n),
just that f(n) ≤ cg(n), where  c  is a constant that we can
make as large as we like.   For example, if g(n) = 2n and
f(n) = 800n, then f is in O(g),  since we can pick c = 500
to boost  g  up.   (We’ll write this as  2n  Œ  O(800n).)

Second: It’s also not necessary that f(n) ≤ cg(n) for all n.
It’s enough for  cg  to exceed  f  for those n  larger than
some specific N which we can pick as large as we please.
For example,  n20 is in O(2n) even though n20 is bigger
for n ≤ 143.   Once n ≥ 144 (and forever after), 2n wins.

Loosely, you can think of O(g) as the set of all functions
less than or equal to g in the sense of “functional
comparison” that we said we’d use for algorithm
complexity:  consider only behavior at infinity and
ignore constant factors.



Examples
Example:   As you showed in Project 4,   4n Œ O(n!)
because for all  n  > 10 we have  4n < n!.  Here we’ve
used the definition with  N = 10  and  c = 1.

Example:    As we said, not only is  2n  obviously in
O(800n), but also  800n Œ O(2n).    Similarly, we have
5n3 Œ O(2n3) and vice versa.    In general, we can ignore
multiplicative constants when deciding whether f Œ O(g)
because we can always boost g by picking a bigger c.
That is,  if  f Œ O(g)  then  k1f Œ O(k2g)  for any positive
constants k1 and k2, no matter how big or small.  (This
shouldn’t be surprising;  we defined it that way!)

Example:  n2 Œ O(n3), and indeed na Œ O(nb) for any
a ≤ b.    Other examples:   ÷n Œ O(n),   n4 Œ O(n4.1).

Example:  nk Œ O(bn)  for any  k  and any  b > 1.   This is
what we mean by saying that any exponential function
eventually exceeds any polynomial.   But it only happens
“at infinity”;  you must choose a very large N to have
n100000000000000  ≤  1.000000000000001n  for all  n > N.



Negative Results
As it happens,   n3 œ O(n2).  How can we prove this?
Back to basic quantifier logic!   f Œ O(g) means

($N)($c)("n)  n ≥ N  Æ  f(n) ≤ cg(n)
Negating this statement, as you surely know, yields

("N)("c)($n)   n ≥ N   Ÿ   f(n) > cg(n)
That is, f œ O(g) means that no matter how big N and c,
there’s some still-bigger n such that f(n) exceeds g(n)
even when g(n) is boosted up by a factor of c.

Let’s prove that n2 œ O(n).   We must prove that for any
N and c there’s some n > N such that  n2 > cn.   So given
N and c, can we find such an n?   Pick  n  >  c and it’s
certainly true!   Of course n must also exceed N.   So the
proof starts like this:  given N and c, let  n = max(N,c)+1.
We can similarly prove that  na œ O(nb)  for any  a > b.

Remember:  To prove f  Œ O(g),  you get to find N and c
to make f(n) ≤ g(n) for all n > N.   But to prove  f œ O(g)
you have to show how to find, for any N and c picked by
someone else, at least one n > N that makes f(n) > cg(n).
Knowing how to use these definitions will enhance your
enjoyment of the upcoming exam!



General Results
For any function f,  f Œ O(f).   [Homework problem.]

If f1 and f2 are both in O(g), then the function f1 + f2 is
in O(g).    Sketch of proof:  Since f1 Œ O(g) there exists
an N1 and a c1. . .   Then f2 Œ O(g) gives us an N2 and a
c2. . .   Now pick N = max(N1,N2) and c = c1+c2 to finish.

If  f Œ O(g) and g Œ O(h), then f Œ O(h).   Said another
way, if g Œ O(h), then O(g) Õ O(h).

O(f) = O(g) if and only if both f Œ O(g) and g Œ O(f).
[Another homework problem.  Do we understand it?]

As we said, f Œ O(g) loosely means “g is at least as big
as f.”   But beware of being too simplistic;  functions are
more complicated than numbers and can wiggle around
in tricky ways.   Another homework problem gives you
specific functions f and g and asks you to prove that
f œ O(g) and g œ O(f)!   A blackboard picture will give
you the intuition behind this.   Problem:  Find two such
functions f and g that are monotonically increasing.



A Useful Result
Suppose we have several functions f1, f2, f3, . . . , fn, and
one of them, say f1, is the “biggest” in the sense that f2,
f3, . . ., fn are all in O(f1).   Then we know by a result on
the preceding page that f1 + f2 + f3 + . . . + fn is in O(f1).
And certainly  f1 Œ  O(f1 + f2 + f3 +. . .+ fn).
Therefore, by another result on the preceding page,

O(f1)  =  O(f1 + f2 + f3 +. . .+ fn)   if each  fi  Œ O(f1)

The bottom line here is that we can ignore all terms of a
sum except the biggest.   So, for example,

O(10n4 + 50n3 + 2n2 + 8n + 10000)   =   O(n4)
where we’ve also ignored the multiplicative constant 10.
That is,  O(any polynomial)  =  O(its largest power).

Another example:
O(10n4 + 500n3.99999 + 2n2.5 + 8n + 100n–1)   =   O(n4)



Some Mathematics
For any positive a and b,   O(loga n)  =  O(logb n).
In particular, O(log n) = O(lg n) = O(ln n).  This is true
because changing the base of logarithms is just
multiplication by a constant factor.   Learn this.

Reminder:  nk Œ O(bn) for any k and any b > 1; any
exponential eventually grows faster than any polynomial.
Taking logs, we find that log n Œ O(n).   Indeed, we have
logk n Œ O(nb) for any k no matter how big and any b >0.
This means, e.g., that  log100 n Œ O(÷n).

Although you can ignore overall multiplicative
constants, you can’t ignore them everywhere!  For
example, 22n is not  in O(2n);  constant factors in the
exponent are not ignorable.   Similarly,  O(2n) ≠ O(3n).

What does O(1) mean?   By definition, function f is in
O(1) if there are N and c such that f(n) < c for all n > N.
That is, the functions in O(1) are those bounded by a
constant; the functions that never get to infinity at all!
What would O(70) mean?



Other Sets
O(g) is the set of functions “no bigger than g”.   The set
of functions “at least as big as g” is written W(g);
formally, f is in W(g) if there exist N and c > 0 such that
f(n) ≥ cg(n)  for all  n > N.    As homework, you’re going
to prove that  f Œ W(g)  if and only if  g Œ O(f).

If we take the functions that are both “no bigger than f”
and “at least as big as f” we get the set of functions that
have the same order of growth as f.   This set is written
Q(f) and is defined as O(f) « W(f).   Knowing the exact
order of growth of a problem is the typical goal.

We also have notation for functions that are “definitely
smaller than g”:  We say that f Œ o(g)  if  for all  c > 0
there exists N such that f(n) < cg(n) for all n > N.    That
is, no matter how small you pick c, eventually the ratio
f(n)/g(n) is  < c;  no constant factor can build f up to g.

Analogously, w(g) is the set of functions that are
“definitely bigger than g”;  you can guess the definition.

It’s very instructive to study the distinction between
“f Œ O(g)”  and  “f œ w(g)”;   these are not the same!
The latter is ("c)($N)("n);  the former is ("c)("N)($n).
Again, this is because functions are complicated.



Two G Warnings
Warning #1:   Grimaldi uses the phrase “g dominates f”
to mean f Œ O(g).   So he would say, for example, that
any function f dominates itself, or that p(n) =  0.00001n
dominates q(n) = 10000000n.

Not everyone uses this terminology, myself in particular.
By “g dominates f”  I  would mean  f Œ o(g), that is, f is
definitely smaller than g in the limit.   Functions p and q
above have the same order of growth (namely linear, i.e.,
both are in Q(n)), but neither dominates the other.

Warning #2:   All functions in this lecture have been
assumed to be from positive numbers to positive
numbers.   Grimaldi’s presentation permits negative
numbers as well, so his definition is full of absolute
values and disclaimers about dividing by zero:   He
defines O(g) as the set of functions  f  for which there
exist N and c such that |f(n)| < c|g(n)| for all n > N where
g(n) ≠ 0.  This means that f can’t exceed g in absolute
value, i.e., it can’t go hugely negative below g.



Final Fun Facts
There are all sorts of ways to slip orders of growth
between each other.  For example, if f(n) = n4 log n, then
f is in w(n4) but is in o(n4.000000000000001).

As another example, consider f(n) = nlog n.  This function
is W(nk) for any k no matter how big, but is in o(bn)  for
any b > 1.   That is, it’s strictly between the polynomials
and the exponentials.  Can you find a function that lies
strictly between  logk n  and  nb  for huge k and tiny b?

Sometimes the notation O(f) is used to mean “some
function in O(f)”.   For example, we might write

g(n) = n4 + O(n3)
to mean that the difference between g(n) and n4 is some
function that never gets bigger than n3.    (Is it the same
thing to write  g(n) = n4 + o(n4)?    Which is stronger?)
Also, older books write  f = O(g)  to mean  f Œ O(g).

The facts concerning the problems we used as examples:
MAXIMUM is Q(n), SORTING is Q(n log n).  Nobody
knows the complexity of FACTORING, but it was just
proven a year ago that just testing a number to see if it is
prime is polynomial, that is, it’s in Q(nk) for some k.
Whether VALIDITY is polynomial is the celebrated
“P=NP?” question, still the most important unsolved
problem in computer science.


