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Mad world! mad kings! mad composition!
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Administrivia
• http://denenberg.com/LectureN.pdf

• Next Thursday’s lecture will be, in part, a review for
the next exam.  Email questions or topics in advance to
nobodylistening@blackhole.com .

• Warning:  Problem 18 of §5.6 continues to (e) on the
next column!

• Project 4:  Grader pounds me,  I pound you:
This is your last warning!

– You can’t manipulate non-equations.
– “if p, then q” is always true when p is false.



A Formal Peculiarity
Consider the function  f1 : Z Æ Z  where  f1(x) = x2.
This function is neither one-to-one nor onto.

Now consider  f2 : Z  Æ { 0, 1, 4, . . .}  where  f2(x) = x2.
This function also is not one-to-one, but is onto.   (We’ve
already noted the sensitivity of onto-ness to codomain.)

But what, formally, are f1 and f2?   Well, they’re sets of
ordered pairs, like any function.   Look at this set:

S   =   {  (x, y)   |   x Œ Z   and  y = x2  }
Here are some elements of S:

(3,9)     (0,0)     (–5,25)     (5,25)     (–2,4)     (9,81)
. . . and so forth.   Which of these functions is the set S?
Answer:  Both are!   But how can it be that f1 = S = f2,
that is,  f1  and  f2  are the same identical object (a set),
yet  f1  isn’t surjective and  f2  is surjective?

Answer:  There’s no good answer.  Grimaldi’s formal
definition of “function” doesn’t encode the codomain.
Grimaldi would say  f1 ≠  f2, since they have different
codomains, but is silent on what that means formally.
Bottom line:  Don’t be confused.  Understanding is more
important than formalism.



Omission & Warning
Let S be any set.   The  identity function on S  is the
function  I : S  Æ S  such that  I(x) = x  for all  x Œ S.
(I takes its input and spits it out unchanged as output.)
The identity function is a bijection on S;  we might also
think of it as a first projection on S.   Important example.

Let S be a set and let * be a binary operation on S with an
identity e.   Suppose that for some  x Œ S  there is an
element y in S such that x * y = y * x = e.   Then we call y
the inverse of x under *, and we write y = x–1.

Example:  The inverse of 8 under addition is –8, since
 8 + –8  =  –8 + 8  =  0.   The inverse of 8 under
multiplication is 1/8.   0 has no multiplicative inverse.

To have inverses, a binary operation must have an
identity (so min has no inverses).  But some binary
operations have identity but no inverses, e.g.  » and «.

The study of inverse elements is hugely important.  But
we’re not studying them here!  We’re studying inverses
of functions.  These are inverses of composition
considered as a binary operation, hence not unrelated,
but inverses in the abstract are not on the program.



Preimages
Let f be a function from X to Y.   Recall the following:
•  If  f(x) = y,  then  y is the image of x
•  If  f(x) = y,  then  x is  a  preimage of y
•  If  A is a subset of the domain of f,  then f(A) is the set
consisting of all y such that y = f(x) for some x in A, and
we call f(A) the image of A.

We complete this duality with the following definition:
Suppose that B is a subset of the codomain of f.  Then
the preimage of B is the set of all  x  such that  f(x) = y
for some  y Œ B.   We write f–1(B) for the preimage of B.
(If B consists of a single point B = {y},  we write f–1(y).)
[blackboard picture of preimage]

Example:  Suppose  g : {cities} Æ {states} is the “state-
located-in” function.  Then          g–1( {MA,NE} )   =
{Natick, Newton, Omaha, Grand Island, . . .}.       Also,

g–1(IA) = { Council Bluffs, Des Moines, . . . }

Example:  Suppose  f  is the floor function  Îx˚.  Then
f–1( {0, 1, 2} )    =    [0,3)

f–1( {5, 7} )    =    [5,6) » [7,8)



Examples & Theorems
Example:  Let  h :  {states} Æ {cities}  be the “capital-
of” function.   Then

h–1( {Montpelier, Helena} )   =   {Montana, Vermont}
h–1(Omaha)  =  ∅

Example:  Let  i : R Æ R be the function i(x) = x2 + 10.
Then   i–1(R )  =  i–1(R+)  =  R   and  i–1([0,10])  =  { 0 }.

As with images, the preimage of a set is always a set,
even if some of these sets have only one element.
E.g.,  if  f  is our familiar +1 function, then  f –1(7)  really
means  f–1 ({7})  and equals {6}, not 6.

Here are a few simple results on preimages, similar to
but simpler than the corresponding theorem on images.
Let  f : X Æ Y and let B1 and B2 be subsets of Y.  Then

f –1(B1 « B2)    =    f –1(B1)  «  f –1(B2)
f –1(B1 » B2)    =    f –1(B1)  »  f –1(B2)

f –1(–B1)    =    – f –1(B1)
Proofs in the text, where G also gives a zillion examples
of preimages, mostly with numerical functions.   (But he
does it in a way sure to confuse you, as we’ll soon see.)



Functional Composition
We think of a function as a box that takes an input and
produces an output.  To compose two functions means to
connect the output of the first to the input of the second!
[Blackboard picture]

Consider again the squaring function f1 (which takes any
x to x2) and the +1 function f2 (which takes x to x+1).
Suppose I take 5, shove it through f1, then take the
output and put it through f2.  The result is 26.   If I wrap
these two functions together and consider it as a single
function, I get a new function that takes any input x and
produces output x2+1.

In symbols, f1(x) = x2 and  f2(x) = x+1.   So the new
composite function is  f2(f1(x))  = x2 + 1.   We call this
new function “f2 after f1” and write it  f2 o f1.  Given two
functions f and g the new function  f o g  is defined as
follows:   (f o g)(x)    =   f(g(x))

[The notation can be a little confusing:  seeing f o g you
might think that f operates first.  Read the symbol o as
“after” and you won’t get confused.   The other thing
that you MUST keep in mind is that f o g is a new
function that stands on its own, just like 8 in 5+3 = 8.]



Appropriateness
We said: Given two functions f and g we can make a
new function f o g.   But this isn’t true for any two
functions;  the output of g must be connectible to the
input of f!

For the function f o g to be defined, the codomain of g
must be the domain of f.    (Actually, it suffices that the
range of g be a subset of the domain of f.)

Formally:  Suppose  f : S Æ T  and  g : T Æ R  are
functions.  Then   g o f : S  Æ R   is  the function that
takes any  x Œ S  to  g(f(x)).   (But  f o g  is meaningless;
(f o g)(x) would be f(g(x)), so x must be in T, but then
g(x) Œ R  and we can’t take f(something in R)!)

So, e.g., if  f : {cities} Æ {states} is “located-in”, and
g : {states} Æ Z  is “population of”,  then the function
g o f : {cities} Æ Z  takes any city c to the population of
the state of c, e.g.  (g o f)(Omaha) ≈ 1.7M.   But  f o g  is
meaningless:  what would  (f o g)(NE)  be?

Of course, if  f  and  g  are both functions from S to S
then both  f o g  and  g o f  are well-defined.  Are they
the same?   If  f  is squaring, and  g  is  increment, is
f(g(x)) the same as  g(f(x))?



More on Composition
Example:  Suppose  f is “state-located-in” as above, and
g : {states} Æ {cities}  is the “capital city of” function.
Then  g o f : {cities} Æ{cities}  maps any city to the city
that’s the capital of its state, e.g.,
(g o f)(Medford) = Boston      (g o f)(Augusta) = Augusta

Example:  Suppose  g : R Æ R  is  g(x) = x2 + 0.5.
Then  floor o g is the function Îx2 + 0.5˚, but g o floor is
the function Îx˚2 + 0.5.  Are these the same?

Example:   Suppose g : R Æ R  is  g(x) = x2 + 1.
Then g o g : R Æ R   is the function

(g o g)(x)   =   g(g(x)   =   x4 + 2x2 + 2
We call this function g2;  by definition, g2 = g o g.
(Note that this definition makes sense only when the
domain and codomain of g are the same.)    We have
g2(x) = g(g(x)).   And  g3 = g2 o g,  so  g3(x) = g(g(g(x))),
and so forth recursively:  for any n >1,  gn is defined as
gn–1 o g.   These functions are the powers of g.

Quirky point:  The base case of the above recursive
definition is implicitly g1 = g.   But what should g0 be?



Associativity
Theorem:  Let h : A Æ B,  g : B Æ C,  and  f : C Æ D  be
functions.   Then  (f o g) o h  =  f o (g o h).

[explanation and intuitive proof by blackboard diagram]

Proof:  Let x be an element of A.  We need to show that
((f o g) o h)(x)   =   (f o (g o h))(x)

The left-hand side is, by definition, (f o g)(h(x)), which
in turn is f(g(h(x))).   The right-hand side is f((g o h)(x))
which is also f(g(h(x))).   So the LHS and RHS are equal.

Keep in mind that  o  is a closed binary operation, like
addition or multiplication, since it takes two things and
spits out another thing of the same type (which is what a
closed binary operation is supposed to do).   We’ve just
proven that  o  is an associative binary operation.  And
we saw earlier that  o  is not a commutative operation:
In general, it’s not true that   f o g   ≠   g o f.
Question:  Is   o   idempotent?
Problem:  Are there any functions such that f o g = g o f?



Simple Results
If f and g are injective, then g o f is injective.
Informal proof:  If x and y are distinct, then f(x) and f(y)
are distinct since f is injective.  From this and the
injectivity of g it follows that g(f(x)) and g(f(y)) are
distinct.   That is, if x and y are distinct then g(f(x)) and
g(f(y)) are distinct, which is to say that g o f is injective.

If f and g are onto, then g o f is onto.
Even more informal proof:  If f is onto then its domain
maps to its entire codomain;  same for g.  Therefore g o f
maps the domain of f first to the whole domain of g and
then to the whole codomain of g, i.e.,  g o f is surjective.

If f and g are bijections, then g o f is a bijection.
Completely formal proof:  Trivial, given the two results
above.

[To understand this completely you might find examples
of functions such that f is injective but neither g nor f o g
is injective.   And the same thing in three other cases.]



Invertibility
Once again, let f : Z Æ Z  be the +1 function, and now
consider the function g : Z Æ Z  defined by g(x) = x – 1.
Notice that  f(g(x))  =  f(x–1)  =  (x–1)+1  =  x  for any x,
that is, f o g is the identity function.  Similarly,  g o f is
the identity function.   In such a situation we say that g is
the inverse of f;  as a box, g undoes whatever f does, and
f undoes whatever g does.

In the example above the domain and codomain are the
same.  But we can be more general:   Suppose f : X Æ Y
is a function, and suppose  g : Y Æ X  is a function such
that  f(g(y)) = y for every y Œ Y, and g(f(x)) = x for every
x Œ X.  Said another way, f o g is the identity function on
Y, and g o f is the identity function on X.   Then we say
that f is invertible and g is the inverse of  f, and we write
g = f–1.   (Since the definition is symmetric, we can also
say g is invertible, f is the inverse of g, and f  = g–1.)

(Technical point:  I said “suppose g is a function such
that...” but I didn’t prove that there can be only one such
function; maybe there there are several such functions g!
But in fact if there is a g it must be unique;  proof in G.)



Examples / Formalism
Example:   Suppose  f : R Æ R   is  f(x) = 3x + 7.
Then f –1 : R Æ R  is the function f –1(x) = (x–7)/3;
note that f(f –1(x)) = f –1(f(x)) = x.   [Both must hold!]

Example:  Suppose f : Z Æ E is the function f(x) = 2x.
Then f –1 : E Æ Z  is f –1(x) = x/2.    But f1 : Z Æ Z
with f1(x) = 2x is not invertible;  there is no g : Z Æ Z
such that g(f1(x)) = x  and  f1(g(x)) = x.    (Try x = 3!)

Formally, recall that a function is a set of ordered pairs.
Then we form the converse of that set of ordered pairs by
reversing each pair, i.e., we replace each (x,y) with (y,x).
Of course the result may not be a function (why?).  But if
it is, then the original function is invertible, and the
converse is the inverse function.  Totally unilluminating.

Caution:  Do not confuse “inverse” with “preimage”,
even though they use the same notation!   The preimage
of a set is defined for any function, but not all functions
are invertible.   We use the same notation for the
following reason:  If f is invertible, then for any set A the
preimage of A under f is equal to the image of A under
the inverse of f.  So both are written  f –1(A).



Invertible = Bijective
Suppose f : X Æ Y  is invertible and that g : Y Æ X is its
inverse.   What can we say about  f  and  g?

First:  f must be one-to-one;  it’s not possible that there
are distinct x1 and x2 in X such that f(x1) = f(x2).
Intuitively:  If there were  x1  and  x2  that collapsed into
the same y, how could g, given y, produce both of them?
Formal proof:  Suppose we are given x1 and x2 in X as
above.  So g(f(x1)) = g(f(x2)).   But g(f(x1)) = x1 and
g(f(x2)) = x2 by definition of inverse.   So x1 = x2.  QED

Second:  f must be onto;  for each y Œ Y there must be
some x Œ X such that f(x) = y.
Proof:  Since g is a function, for each y Œ Y we have
g(y) Œ X.  But then f(g(y)) = y by definition of inverse,
and we’ve found the x we need.

We’ve proved that every invertible function is bijective.
It’s also true that every bijective function is invertible!
Sketch:  Let f : X Æ Y be bijective.   For each y Œ Y there
is an x Œ X such that f(x) = y  [since f is onto] and there
is in fact exactly one such x  [since f is 1-1].  So define a
function g as follows:  for each y Œ Y, let g(y) be that
unique x.  It’s easy to prove that this g is the inverse of f.



An Important Theorem
Suppose  f : X Æ Y  and  g : Y Æ Z  are both invertible
functions.   Then the function  g o f : X Æ Z  is also
invertible, and in fact   (g o f)–1  =  f–1 o  g–1.

What does this theorem say?  It says that if each step you
go forward can be reversed, then you can also reverse the
effect of going two steps forward.  But you must take the
reverse steps in backwards order!   [blackboard picture]

I strongly recommend that you prove this theorem
yourself;  it’s not very hard, and it’s a great exercise.
We’ll do one example:   Let  f : Z Æ Z be our old friend
the +1 function, and let g : Z Æ E be the function that
doubles its argument:  g(x) = 2x, where E is the set of
even integers.  (Why did I put E here instead of Z?)
Then  g o f : Z Æ E  is the function  (g o f)(x) = 2x + 2
since  “g after f” means “add one then double”.

How do we invert this?  Do we subtract one and halve?
No indeed—we must halve, then subtract one.   f–1 is
“subtract one” and g–1 is “halve”,  so  it must be that
(g o f)–1 , the inverse of “g after f”,  is “f–1 after g–1”.



A Counting Theorem
Suppose  f : X  Æ Y   for finite sets  X  and  Y  such that
|X| = |Y|.   Then the following statements are equivalent:

(a)  f  is invertible
(b)  f  is bijective
(c)  f  is injective
(d)  f  is surjective

(Remember what this means:  These statements are
either all true or all false.  Said another way, if  f
possesses any of these properties, it possesses them all.)

Recall how we prove a theorem of equivalent statements:
we prove that (a) fi (b),  that (b) fi (c),  that (c) fi (d),
and finally that (d) fi (a).   Here things are simpler since
we’ve already proved (a) and (b) equivalent,  and (b)
implies both (c) and (d) by definition.  So if we prove
that (c) fi (b) and (d) fi (b) we’re done.  Details in G,
using the Pigeonhole Principle.

But here’s the intuition:   When two sets are of the same
size, anything injective must be surjective since there
can’t be any extra elements in the codomain.  And any
surjection must be one-to-one since otherwise there
aren’t enough elements in the domain to cover the
codomain.    [proof by blackboard picture]


