MATH 22 Lecture N: 10/16/2003 FUNCTIONS: COMPOSITION & INVERSES

Mad world! mad kings! mad composition! —Shakespeare, *King John*, II:1

Copyright © 2003 Larry Denenberg

Administrivia

- <u>http://denenberg.com/LectureN.pdf</u>
- Next Thursday's lecture will be, in part, a review for the next exam. Email questions or topics in advance to <u>nobodylistening@blackhole.com</u>.
- Warning: Problem 18 of §5.6 continues to (e) on the next column!
- Project 4: Grader pounds me, I pound you: This is your last warning!
 - You can't manipulate non-equations.
 - "if p, then q" is always true when p is false.

A Formal Peculiarity

Consider the function $f_1 : \mathbb{Z} \to \mathbb{Z}$ where $f_1(x) = x^2$. This function is neither one-to-one nor onto.

Now consider $f_2 : \mathbb{Z} \to \{0, 1, 4, ...\}$ where $f_2(x) = x^2$. This function also is not one-to-one, but *is* onto. (We've already noted the sensitivity of onto-ness to codomain.)

But what, formally, are f_1 and f_2 ? Well, they're sets of ordered pairs, like any function. Look at this set:

 $S = \{ (x, y) \mid x \in \mathbb{Z} \text{ and } y = x^2 \}$ Here are some elements of *S*:

(3,9) (0,0) (-5,25) (5,25) (-2,4) (9,81) ... and so forth. Which of these functions is the set S? Answer: Both are! But how can it be that $f_1 = S = f_2$, that is, f_1 and f_2 are the same identical object (a set), yet f_1 *isn't* surjective and f_2 *is* surjective?

Answer: There's no good answer. Grimaldi's formal definition of "function" *doesn't encode the codomain*. Grimaldi would say $f_1 \neq f_2$, since they have different codomains, but is silent on what that means formally. Bottom line: Don't be confused. Understanding is more important than formalism.

Omission & Warning

Let *S* be any set. The *identity function on S* is the function $I: S \rightarrow S$ such that I(x) = x for all $x \in S$. (I takes its input and spits it out unchanged as output.) The identity function is a bijection on *S*; we might also think of it as a first projection on *S*. Important example.

Let *S* be a set and let * be a binary operation on *S* with an identity *e*. Suppose that for some $x \in S$ there is an element *y* in *S* such that x * y = y * x = e. Then we call *y* the *inverse of x under* *, and we write $y = x^{-1}$.

Example: The inverse of 8 under addition is -8, since 8 + -8 = -8 + 8 = 0. The inverse of 8 under multiplication is 1/8. 0 has no multiplicative inverse.

To have inverses, a binary operation must have an identity (so *min* has no inverses). But some binary operations have identity but no inverses, e.g. \cup and \cap .

The study of inverse elements is hugely important. But we're not studying them here! We're studying inverses of functions. These *are* inverses of composition considered as a binary operation, hence not unrelated, but inverses in the abstract are not on the program.

Preimages

Let f be a function from X to Y. Recall the following:

- If f(x) = y, then y is the *image* of x
- If f(x) = y, then x is a *preimage* of y

• If *A* is a subset of the domain of f, then f(A) is the set consisting of all *y* such that y = f(x) for some *x* in *A*, and we call f(A) the *image of A*.

We complete this duality with the following definition: Suppose that *B* is a subset of the codomain of f. Then the *preimage of B* is the set of all *x* such that f(x) = yfor some $y \in B$. We write $f^{-1}(B)$ for the preimage of *B*. (If *B* consists of a single point $B = \{y\}$, we write $f^{-1}(y)$.) [blackboard picture of preimage]

Example: Suppose $g: \{\text{cities}\} \rightarrow \{\text{states}\}\ \text{is the "state-located-in" function. Then } g^{-1}(\{\text{MA,NE}\}) = \{\text{Natick, Newton, Omaha, Grand Island, ...}\}.$ Also, $g^{-1}(\text{IA}) = \{\text{ Council Bluffs, Des Moines, ...}\}$

Example: Suppose f is the floor function [x]. Then $f^{-1}(\{0, 1, 2\}) = [0,3)$ $f^{-1}(\{5, 7\}) = [5,6) \cup [7,8)$

Examples & Theorems

Example: Let $h: \{states\} \rightarrow \{cities\}$ be the "capitalof" function. Then

 $h^{-1}(\{Montpelier, Helena\}) = \{Montana, Vermont\}$ $h^{-1}(Omaha) = \emptyset$

Example: Let $i: \underline{\mathbf{R}} \to \underline{\mathbf{R}}$ be the function $i(x) = x^2 + 10$. Then $i^{-1}(\underline{\mathbf{R}}) = i^{-1}(\underline{\mathbf{R}}^+) = \underline{\mathbf{R}}$ and $i^{-1}([0,10]) = \{0\}$.

As with images, the preimage of a set is *always* a set, even if some of these sets have only one element. E.g., if f is our familiar +1 function, then $f^{-1}(7)$ really means $f^{-1}(\{7\})$ and equals $\{6\}$, not 6.

Here are a few simple results on preimages, similar to but simpler than the corresponding theorem on images. Let $f: X \rightarrow Y$ and let B_1 and B_2 be subsets of Y. Then

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

$$f^{-1}(-B_1) = -f^{-1}(B_1)$$

Proofs in the text, where G also gives a zillion examples of preimages, mostly with numerical functions. (But he does it in a way sure to confuse you, as we'll soon see.)

Functional Composition

We think of a function as a box that takes an input and produces an output. To *compose* two functions means to connect the output of the first to the input of the second! [Blackboard picture]

Consider again the squaring function f_1 (which takes any x to x^2) and the +1 function f_2 (which takes x to x+1). Suppose I take 5, shove it through f_1 , then take the output and put it through f_2 . The result is 26. If I wrap these two functions together and consider it as a single function, I get a new function that takes any input x and produces output x^2+1 .

In symbols, $f_1(x) = x^2$ and $f_2(x) = x+1$. So the new composite function is $f_2(f_1(x)) = x^2 + 1$. We call this new function " f_2 after f_1 " and write it f_2 o f_1 . Given two functions f and g the new function f o g is defined as follows: $(f \circ g)(x) = f(g(x))$

[The notation can be a little confusing: seeing f o g you might think that f operates first. Read the symbol o as "*after*" and you won't get confused. The other thing that you MUST keep in mind is that f o g is a new function that stands on its own, just like 8 in 5+3 = 8.]

Appropriateness

We said: Given two functions f and g we can make a new function f o g. But this isn't true for *any* two functions; the output of g must be connectible to the input of f!

For the function f o g to be defined, the codomain of g must be the domain of f. (Actually, it suffices that the range of g be a subset of the domain of f.)

Formally: Suppose $f: S \rightarrow T$ and $g: T \rightarrow R$ are functions. Then $g \circ f: S \rightarrow R$ is the function that takes any $x \in S$ to g(f(x)). (But f $\circ g$ is meaningless; (f $\circ g$)(x) would be f(g(x)), so x must be in T, but then $g(x) \in R$ and we can't take f(something in R)!)

So, e.g., if $f: \{\text{cities}\} \rightarrow \{\text{states}\}\ \text{is "located-in", and}\ g: \{\text{states}\} \rightarrow \underline{Z}\ \text{is "population of", then the function}\ g \circ f: \{\text{cities}\} \rightarrow \underline{Z}\ \text{takes any city } c \ \text{to the population of}\ \text{the state of } c, \text{e.g. (g o f)(Omaha)} \approx 1.7M.\ \text{But f o g is}\ \text{meaningless: what would (f o g)(NE) be?}$

Of course, if f and g are both functions from S to S then both f o g and g o f are well-defined. Are they the same? If f is squaring, and g is increment, is f(g(x)) the same as g(f(x))?

More on Composition

Example: Suppose f is "state-located-in" as above, and g: {states} \rightarrow {cities} is the "capital city of" function. Then g o f: {cities} \rightarrow {cities} maps any city to the city that's the capital of its state, e.g., (g o f)(Medford) = Boston (g o f)(Augusta) = Augusta

Example: Suppose $g : \underline{R} \to \underline{R}$ is $g(x) = x^2 + 0.5$. Then floor o g is the function $\lfloor x^2 + 0.5 \rfloor$, but g o floor is the function $\lfloor x \rfloor^2 + 0.5$. Are these the same?

Example: Suppose $g : \underline{R} \to \underline{R}$ is $g(x) = x^2 + 1$. Then g o g : $\underline{R} \to \underline{R}$ is the function

 $(g \circ g)(x) = g(g(x)) = x^4 + 2x^2 + 2$

We call this function g^2 ; by definition, $g^2 = g \circ g$. (Note that this definition makes sense only when the domain and codomain of g are the same.) We have $g^2(x) = g(g(x))$. And $g^3 = g^2 \circ g$, so $g^3(x) = g(g(g(x)))$, and so forth recursively: for any n > 1, g^n is defined as $g^{n-1} \circ g$. These functions are the *powers of g*.

Quirky point: The base case of the above recursive definition is implicitly $g^1 = g$. But what should g^0 be?

Associativity

Theorem: Let $h : A \rightarrow B$, $g : B \rightarrow C$, and $f : C \rightarrow D$ be functions. Then (f o g) o h = f o (g o h).

[explanation and intuitive proof by blackboard diagram]

Proof: Let x be an element of A. We need to show that $((f \circ g) \circ h)(x) = (f \circ (g \circ h))(x)$

The left-hand side is, by definition, (f o g)(h(x)), which in turn is f(g(h(x))). The right-hand side is f((g o h)(x)) which is also f(g(h(x))). So the LHS and RHS are equal.

Keep in mind that o is a closed binary operation, like addition or multiplication, since it takes two things and spits out another thing of the same type (which is what a closed binary operation is supposed to do). We've just proven that o is an *associative* binary operation. And we saw earlier that o is *not* a commutative operation: In general, it's not true that f o g \neq g o f. Question: Is o idempotent?

Problem: Are there any functions such that $f \circ g = g \circ f$?

Simple Results

If f and g are injective, then g o f is injective.

Informal proof: If x and y are distinct, then f(x) and f(y) are distinct since f is injective. From this and the injectivity of g it follows that g(f(x)) and g(f(y)) are distinct. That is, if x and y are distinct then g(f(x)) and g(f(y)) are distinct, which is to say that g o f is injective.

If f and g are onto, then g o f is onto.

Even more informal proof: If f is onto then its domain maps to its entire codomain; same for g. Therefore g o f maps the domain of f first to the whole domain of g and then to the whole codomain of g, i.e., g o f is surjective.

If f and g are bijections, then g o f is a bijection. Completely formal proof: Trivial, given the two results above.

[To understand this completely you might find examples of functions such that f is injective but neither g nor f o g is injective. And the same thing in three other cases.]

Invertibility

Once again, let $f: \underline{Z} \to \underline{Z}$ be the +1 function, and now consider the function $g: \underline{Z} \to \underline{Z}$ defined by g(x) = x - 1. Notice that f(g(x)) = f(x-1) = (x-1)+1 = x for any *x*, that is, f o g is the identity function. Similarly, g o f is the identity function. In such a situation we say that g is the *inverse* of f; as a box, g undoes whatever f does, and f undoes whatever g does.

In the example above the domain and codomain are the same. But we can be more general: Suppose $f: X \rightarrow Y$ is a function, and suppose $g: Y \rightarrow X$ is a function such that f(g(y)) = y for every $y \in Y$, and g(f(x)) = x for every $x \in X$. Said another way, f o g is the identity function on *Y*, and g o f is the identity function on *X*. Then we say that f is *invertible* and g is the *inverse* of f, and we write $g = f^{-1}$. (Since the definition is symmetric, we can also say g is invertible, f is the inverse of g, and $f = g^{-1}$.)

(Technical point: I said "suppose g is a function such that..." but I didn't prove that there can be only one such function; maybe there there are several such functions g! But in fact if there is a g it must be unique; proof in G.)

Examples / Formalism

Example: Suppose $f: \underline{R} \to \underline{R}$ is f(x) = 3x + 7. Then $f^{-1}: \underline{R} \to \underline{R}$ is the function $f^{-1}(x) = (x-7)/3$; note that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$. [Both must hold!]

Example: Suppose $f: \underline{Z} \to \underline{E}$ is the function f(x) = 2x. Then $f^{-1}: \underline{E} \to \underline{Z}$ is $f^{-1}(x) = x/2$. But $f_1: \underline{Z} \to \underline{Z}$ with $f_1(x) = 2x$ is *not* invertible; there is no $g: \underline{Z} \to \underline{Z}$ such that $g(f_1(x)) = x$ and $f_1(g(x)) = x$. (Try x = 3!)

Formally, recall that a function is a set of ordered pairs. Then we form the *converse* of that set of ordered pairs by reversing each pair, i.e., we replace each (x,y) with (y,x). Of course the result may not be a function (why?). But if it is, then the original function is invertible, and the converse is the inverse function. Totally unilluminating.

Caution: Do not confuse "inverse" with "preimage", even though they use the same notation! The preimage of a set is defined for any function, but not all functions are invertible. We use the same notation for the following reason: If f *is* invertible, then for any set A the preimage of A under f is equal to the image of A under the inverse of f. So both are written $f^{-1}(A)$.

Invertible = Bijective

Suppose $f: X \rightarrow Y$ is invertible and that $g: Y \rightarrow X$ is its inverse. What can we say about f and g?

First: f must be one-to-one; it's not possible that there are distinct x_1 and x_2 in X such that $f(x_1) = f(x_2)$. Intuitively: If there were x_1 and x_2 that collapsed into the same y, how could g, given y, produce both of them? Formal proof: Suppose we are given x_1 and x_2 in X as above. So $g(f(x_1)) = g(f(x_2))$. But $g(f(x_1)) = x_1$ and $g(f(x_2)) = x_2$ by definition of inverse. So $x_1 = x_2$. QED

Second: f must be onto; for each $y \in Y$ there must be some $x \in X$ such that f(x) = y. **Proof**: Since g is a function, for each $y \in Y$ we have $g(y) \in X$. But then f(g(y)) = y by definition of inverse, and we've found the *x* we need.

We've proved that every invertible function is bijective. It's also true that every bijective function is invertible! Sketch: Let $f: X \rightarrow Y$ be bijective. For each $y \in Y$ there is an $x \in X$ such that f(x) = y [since f is onto] and there is in fact exactly one such x [since f is 1-1]. So define a function g as follows: for each $y \in Y$, let g(y) be that unique x. It's easy to prove that this g is the inverse of f.

An Important Theorem

Suppose $f: X \to Y$ and $g: Y \to Z$ are both invertible functions. Then the function $g \circ f: X \to Z$ is also invertible, and in fact $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

What does this theorem say? It says that if each step you go forward can be reversed, then you can also reverse the effect of going two steps forward. *But you must take the reverse steps in backwards order*? [blackboard picture]

I strongly recommend that you prove this theorem yourself; it's not very hard, and it's a great exercise. We'll do one example: Let $f: \underline{Z} \to \underline{Z}$ be our old friend the +1 function, and let $g: \underline{Z} \to \underline{E}$ be the function that doubles its argument: g(x) = 2x, where \underline{E} is the set of even integers. (Why did I put \underline{E} here instead of \underline{Z} ?) Then g of $: \underline{Z} \to \underline{E}$ is the function (g o f)(x) = 2x + 2 since "g after f" means "add one then double".

How do we invert this? Do we subtract one and halve? No indeed—we must halve, *then* subtract one. f^{-1} is "subtract one" and g^{-1} is "halve", so it must be that (g o f)⁻¹, the inverse of "g after f", is "f⁻¹ after g⁻¹".

A Counting Theorem

Suppose $f: X \rightarrow Y$ for *finite* sets X and Y such that |X| = |Y|. Then the following statements are equivalent:

- (a) f is invertible
- (b) f is bijective
- (c) f is injective
- (d) f is surjective

(Remember what this means: These statements are either all true or all false. Said another way, if f possesses any of these properties, it possesses them all.)

Recall how we prove a theorem of equivalent statements: we prove that (a) \Rightarrow (b), that (b) \Rightarrow (c), that (c) \Rightarrow (d), and finally that (d) \Rightarrow (a). Here things are simpler since we've already proved (a) and (b) equivalent, and (b) implies both (c) and (d) by definition. So if we prove that (c) \Rightarrow (b) and (d) \Rightarrow (b) we're done. Details in G, using the Pigeonhole Principle.

But here's the intuition: When two sets are of the same size, anything injective must be surjective since there can't be any extra elements in the codomain. And any surjection must be one-to-one since otherwise there aren't enough elements in the domain to cover the codomain. [proof by blackboard picture]