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MORE  ABOUT
FUNCTIONS

Form follows function.
—Louis Henri Sullivan

This frightful word, function, was
born under other skies than those I
have loved.              —Le Corbusier

D’ora innanzi ogni cosa deve
camminare alla perfezione.

—Benito Mussolini
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Administrivia
• http://denenberg.com/LectureM.pdf

• Project 5 handed out today, due 10/21 in class.

• Exam 2:   Monday 10/27, time & place TBA.

Today:  Much more about functions.

From now on everything must function to perfection.



Review
A  binary relation on set S is a subset of S ¥ S, that is,
it’s just a set of ordered pairs.  Every ordered pair in the
relation consists of two things that stand in that relation
to each other.  Examples:  <,  “is within 100 miles of”.

Binary relations can be reflexive, symmetric, transitive,
or any combination of these (or none of these).

A binary relation from set S to set T is a subset of S ¥ T.
Example:  “is a city in”;   S is {cities} and T is {states}.

There are 2|S||T| binary relations from S to T.

========================================

A function (informally) is a rule that takes a value (the
“input”, or preimage) from a set called the domain,  and
produces a new value (the “output”, or image) from a set
called the codomain.   We write this  f : D Æ C.

If A is a subset of the domain of f, then the image of A,
written f(A), is the subset of the codomain consisting of
those elements that are the image of some element of A.
The image of the entire domain is called the range of f.

ÎÎFloor˚̊, ÈÈceiling˘̆, and truncate are functions on numbers.



Review, cont.
A function that never collapses two inputs to the same
output is called injective, or one-to-one.   Formally, f is
injective if f(a) = f(b) implies a = b.

If  f : A Æ B is injective, then |A| ≤ |B|       (for finite sets)

A function that hits each value in the codomain is called
surjective, or onto.   Formally, f is surjective if for each
b Œ B there is an a Œ A such that f(a) = b.  A function is
surjective if and only if its range equals its codomain.
(Onto-ness is sensitive to what we choose as codomain.)

If  f : A Æ B is surjective, then |A| ≥ |B|     (for finite sets)

A function that is both injective and surjective is called
bijective, or a bijection, or one-one onto, or a one-to-one
correspondence.   It assigns each element of its domain
to a distinct element of its codomain (since it’s one-one)
and hits the entire codomain (since it’s onto).  It
perfectly matches up the domain and codomain.

If  f : A Æ B is bijective, then |A| = |B|       (for finite sets)



Two Minor Points
Theorem:  Suppose f : S Æ T   and   A, B  Õ  S.  Then

f(A » B)   =   f(A) » f(B)
f(A « B)  Õ   f(A) « f(B)

(Why this asymmetry?  We’ll go through the proof and
see.  Then we’ll fix it by pointing out that the second
expression becomes an equality if  f  is injective.)

Suppose  f : A Æ B  and  A1 Õ  A.  Then we can make a
new function  f1 : A1 Æ B in the obvious way:  we define
f1(a)  to be  f(a)!   We call f1  the restriction of  f  to A1.

For example, think of the +1 function which takes real
numbers to real numbers.   The restriction of this
function to the integers is +1 function that takes integers
as inputs.

In the opposite direction, let A2 be a set such that A Õ A2
and let  f2 : A2 Æ B  be such that  f2(a) = f(a)  for every
a Œ A.   Then f2 is said to be  an extension of  f  to A2.
[As before:   Why is  f1  the restriction of f to A1, but  f2
is an extension of  f  to  A2?]



Functions (formally)
We’ve tried to get an intuitive grasp of functions.   But
how shall we define them formally?   It turns out that a
function is a special kind of binary relation.

A function f  from A to B, written f : A Æ B, is a binary
relation from A to B with the following special property:
for each  a Œ A  there is exactly one  b Œ B  such that
(a,b) Œ f.

That is, a function—like a binary relation—is a set of
ordered pairs.   But any set of ordered pairs is a binary
relation;  for a set of ordered pairs to be a function it
must satisfy the special property above.  We can think of
it as two properties:

– For every x in the domain, there must be an
ordered pair (x,y) in the function, and
– For every ordered pair (x,y) in the function, there
can’t be any other ordered pair (x,z) in the function.

The first of these properties guarantees that f produces
some output for every input.  The second guarantees that
f produces a unique output for every input.  All functions
must have this property:  for every input there must be
exactly one output.



Terminology Reprise
Now let’s look at all the function terminology and see
what it boils down to in the language of ordered pairs.

A function f : X Æ Y, that is, a function with domain X
and codomain Y,  is a subset of X ¥ Y with the property
that for each x Œ X there is exactly one y Œ Y such that
(x,y) Œ f.   [We just said this.]

If (x,y) Œ f, then we say that y is the image of x under f
and x is a preimage of y under f, and we write f(x) = y.

If A Õ X, then the image f(A) of A under f is the set of all
y Œ Y such that there is some (x,y) Œ f with x Œ A.

The range of  f  is the set of all y Œ Y such that (x,y) Œ f
for some x Œ X.

Function  f  is injective if for every y Œ Y there is at most
one pair (x,y) Œ f.

Function f  is surjective if for every y Œ Y there is at
least one pair (x,y) Œ f.

Function f  is bijective if for every y Œ Y there is exactly
one pair (x,y) Œ f.



Multiple Arguments
So far we’ve considered only functions of a single
argument (like +1, or squaring, or father-of).  How do we
handle functions of multiple arguments, like the function
+  which takes two numbers in and produces one out?
[E.g., +(3,7)  = 10, more commonly written 3+7=10.]

Answer:  We force such functions to be functions of one
argument by making them functions of ordered n-tuples!
For example, we think of  +  as a function that takes a
(single) ordered pair of (say) integers as input, and
produces an integer as output.   We write  + : Z ¥ Z Æ Z.
That is, it’s not technically +(3,7), but +((3,7)).  The
same applies to functions of even more arguments.

DON’T CONFUSE THIS with the use of ordered pairs
in the formal definition of a function, which is a distinct
use of ordered pairs.  As an example, let’s look at  +
more closely.    It’s a subset of  (Z ¥ Z) ¥ Z :

+   =   { ((1,1), 2),   ((3, 7),  10),   ((4, 1),  5),   .   .   . }
The first ¥ here packages up two arguments into one, so
that we can think of + as a function of one argument.
(There could be more of these for a function of many
arguments.)   The second ¥ is the one connecting the
domain with the codomain, that is, pairing the argument
of the function with the value of the function.



Multiple Args, cont.
Example:  Consider the function that takes a student ID,
a course ID, and an exam ID into a grade.    E.g.,

Gr(502-33-1234,  Math 22,  Test1)   =   96
If S is the set of students, C the set of courses, and E the
set of exams, it’s  Gr : S ¥ C ¥ E Æ {0, 1, 2, . . ., 100}
and we should write  Gr((502-33-1234, Math 22, Test1)).

A very important example:  Suppose A and B are any
two sets and D Õ A ¥ B.   Then the function pr1 : D Æ A
is defined as follows:

For any a Œ A and b Œ B,  pr1(a, b) = a
This function is called the first projection of D.  Think of
pr1 as the function that ignores its second argument and
outputs its first argument.   Similarly, the second
projection of D is the function pr2 with pr2(a,b) = b.

Generalization:  The rth  projection of any subset of
A1 ¥ A2 ¥ . . . ¥ An is the function that takes the ordered
n-tuple  (a1,a2, . . ., an)  into its rth component ar.

[Why the word “projection”?   Think of a two-
dimensional blob projected onto an axis.  (Picture.)]



How Many Functions?
How many functions are there from S to T (finite sets!)?
Rather than counting sets of ordered pairs (as we did for
relations), it’s easier to think of creating a function as a
sequence of choices.  For each s Œ S we must pick some
t Œ T to be the value of the function, and there are |T|
possibilities.   So we pick a t for s1, then a t for s2, etc.,
with |T| ways to choose each.   And of course we make
|S| such choices in all.   By Rule of Product, there are
|T||S| ways to build a function from S to T.    (Indeed, we
use TS to denote the set of all functions from S to T.)

How many injective functions are there from S to T?
Almost the same problem.  For the first element of S we
have |T| choices, for the second we have |T|–1 choices
(because we can’t reuse the first choice) for the third we
have |T|–2 choices, etc.  The answer is  |T|! / (|T|–|S|)!

How many bijective functions are there from S to T?
The trick here is to see that, for a bijection, we must have
|S| = |T|, and any injective function is bijective if |S| = |T|.
So the answer is |T|!  =  |S|!

How many surjective functions are there from S to T?
Turns out we need a new tool for this:  Stirling numbers.



Binary Operations
The domain of a multi-arg function can be the cross
product of different sets, and the codomain can be yet
another set, as we saw with   Gr : S ¥ C ¥ T Æ Z.
When a function has two arguments both from the same
set, that is  f : S ¥ S Æ T,   we call  f  a binary operation.

When the codomain is also the same set,  f : S ¥ S Æ S,
we call  f  a closed binary operation.   (We’ll have very
little to do with binary operations that aren’t closed.)

If  f  is a binary operation, we write  x f y  to mean f(x,y).

Example:  + : Z ¥ Z Æ Z is a closed binary operation on
the integers.   We write  a+b instead of +(a,b).  Similarly
*, –, etc.   But  /, considered as a binary operation on the
integers, is not closed, nor is  –  on the positive integers.

Example: » : S ¥ S Æ S  is a closed binary operation on
sets.   We write  A » B  instead of  »(A,B).

Example:   Ÿ : P ¥ P Æ P is a closed binary operation on
propositions:  it takes in two propositions and outputs a
third.  We write p Ÿ q.   Sometimes we consider Ÿ as a
binary operation on the set of truth values {t, f}.



Properties of Operations
Now let * be some arbitrary closed binary operation on S
(not multiplication).  We use the following terminology:

Operation * is commutative if a*b = b*a for all a,b Œ S.

Operation * is associative if  (a*b)*c  =  a*(b*c) for all
a,b,c Œ S.
(Comment:  For associative operations we can write
a*b*c, which doesn’t make sense otherwise.  We can
also write a*b*c*. . .*z because any way of putting in the
parentheses gives the same answer.   It turns out that
associativity is more important than commutativity;
many operations aren’t commutative, but few non-
associative operations are very interesting.)

Operation * is idempotent if a*a = a for all a Œ S.  (For
example, » and « are idempotent.  Arithmetics +, –, and
so forth aren’t, but max and min are:  max(x, x)  =  x.

(Actually, some of this terminology applies even to binary
operations that aren’t closed.  Which of these terms requires
the binary operation to be closed?)



A Critical Property
Let * be a binary operation on S.   We say that e Œ S is
an identity for * if for all  x Œ S  we have  x*e = e*x = x.

We know many examples:  The operation + on numbers
has identity 0.  Multiplication has identity 1.  The empty
set ∅ is the identity for the union operation on sets.
(What is the identity for the intersection operation?  For
symmetric difference?)   Regarded as operations on truth
values,  ⁄ has identity false and Ÿ has identity true.

On the other hand, consider the binary operations min
and max on numbers.  These operations are
commutative, associative, and idempotent.  But neither
has an identity element.

Can a binary operation have more than one identity?
Theorem:  No.
Proof:   Suppose * is a binary operation on S with two
identities e1 and e2.   Since e1 is an identity, e1 * e2 = e2.
But since e2 is an identity, e1 * e2 = e1.  Since e1 * e2 can
only have one value, we must have e1 = e2.  So all
identity elements are the same.  (Question:  Is this a
proof by contradiction?)



Final Miscellany
A function from S into S is called a unary relation on S.
For example, – is a unary operation on the integers (or
the rationals, or the reals).  Floor, ceiling, and set
complement are other unary relations that we’ve seen.

Here’s a very important example of a function:  We
know about sequences of numbers (or of anything) like

<3, 7, 9, 0, 1, 3, 5, 5, –3, 0>
Which is finite, and infinite sequences like

<0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . >
(the so-called Fibonacci sequence).   What are these,
exactly?  We can think of a sequence of objects from a
set X as a function whose domain is some subset of the
integers and whose codomain is X.  For example, the
Fibonacci sequence is really a function f : Z* Æ Z *
where f(0) = 1, f(1) = f(2) = 1, f(3) = 2, f(8) = 21, etc.
So it’s no mystery that sequences can have duplicates;
it’s the same as saying that not all functions are
injective!

Grimaldi shows how to count the number of binary
operations on S,  the number of commutative binary
operations on S, and the number of binary operations on
S with given identity element.  Read if interested.


