MATH 22

Lecture L: 10/9/2003

MORE M.I.;
 RELATIONS

You know how it is yourself about admiring your relations.
-Cedric Errol, Lord Fauntleroy

Administrivia

- http://denenberg.com/LectureL.pdf
- Yet more on Exam Problem 3 (sigh)

Today: More MI, relations, a start at functions (with luck)

Math. Induction Review

- Well-ordered sets, which we used only to prove . . .
- Principle of Math. Induction: Prove it works for 1 ; and prove that if it works for n , it also works for $\mathrm{n}+1$
- Examples:

$$
\begin{aligned}
& 1+2+3+\ldots+n=n(n+1) / 2 \\
& n^{3}+2 n \text { is divisible by } 3 \\
& \text { if }|S|=n \text {, then }|P(S)|=2^{n}
\end{aligned}
$$

- Variation: Prove it works for $n_{0} ; \ldots$ (needn't start at 1) $\mathrm{n}^{100}<2^{n}$ for all $n \geq 1024$
- M.I., Strong Form: . . . and prove that if it works for everything from 1 to n, it also works for $n+1$
$b_{0}=b_{1}=1, b_{n}=2 b_{n-1}+b_{n-2}$, then $b_{n}<6 b_{n-2}$
$N-1$ links are required to connect N computers
- More examples, to be worked in class

More Examples

Theorem: For every integer $n \geq 2$,

$$
1 / 1+1 / 2+1 / 3+\ldots+1 / n>n
$$

Base case: $1 / 1+1 / 2 \approx 1.7>1.414=n$ Inductive case: We just need to show that

$$
1 /(\mathrm{n}+1)>(\mathrm{n}+1)-\mathrm{n}
$$

[Do we believe this? How can we show it?]

Theorem: For every integer $n \geq 0$

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}
$$

Base case: $0=0$.
Inductive case: We need to evaluate

$$
(1+2+\ldots+n)^{2}=((1+2+\ldots+n)+(n+1))^{2}
$$

Mr. Smith claims to be $1 / 3$ Native American. If asked how this can be, he says "my mother was $1 / 3$ Native American, and my father was $1 / 3$ Native American!" Is this a valid proof by Mathematical Induction?

Convivial Couples

(From Liu) A husband H and wife W invite n couples to dinner. As people arrive, some shake hands. Nobody shakes hands with his or her own spouse. After the handshaking, H asks everyone (including W) how many hands they shook, and no two replies are the same! Prove that W shook hands with exactly n people.

Lemma: With n couples there are $2 n+2$ people, and the $2 n+1$ replies received by H are $0,1,2,3, \ldots, 2 n$.

Lemma: If $n>0$, the person who replied " $2 n$ " is married to the person who replied " 0 ", and neither one is H or W.

Proof by Mathematical Induction:
(Base case) If $n=0$, no handshaking happened, so clearly W shook 0 hands.
(Inductive case) If there are $n+1$ couples the second Lemma applies. Eliminate the couple that replied " $2 n+2$ " and " 0 ". We now are in the same situation with n couples (this requires proof) so, by the inductive hypothesis, W shook n hands. Putting back the last couple, W shook $n+1$ hands. QED

Functions (informally)

(As with relations, we'll do functions informally for awhile.) A function is a rule that, given a value, produces another value. Examples:

The " +1 " function. Given 3, it produces 4 . Given 8 , it produces 9 . Given x, it produces $x+1$. Given $x^{2}+7$, it produces $x^{2}+8$.

The "squaring" function. Given 5, it produces 25. Given -1 , it produces 1. Given x, it produces x^{2}.

The "father of" function. Given Cain, it produces Adam. Given Larry, it produces Norman.

The "state-located-in" function. Given Natick, it produces MA. Given Council Bluffs, it produces IA.

We write $\mathrm{f}(x)=y$ to mean that function f , given x, produces y. So $f_{1}(4)=16$ if f_{1} is the squaring function, and $f_{2}(L A)=C A$ if f_{2} is the "state-located-in" function.

Note that for the moment all our functions take a single argument. We'll worry more about this later.

Useful Functions

Here are some important numeric functions.

For any number x, floor (x) is the largest integer less than or equal to x. This function is also called the "greatest integer" function. We usually write $\square x \square$ for floor (x). Examples:

$$
\square 1.4 \square=1 \quad \square \square=3 \quad \square \beta \square=3 \quad \square-1.5 \square=-2
$$

(Note the last one carefully.)

For any number x, ceiling (x) is the largest integer less than or equal to x. ceiling (x) is written $\mathrm{x} \square$ Examples:

$$
\square 1.4 \square=2 \quad \square \square \square=2 \quad \square-3.7 \square=-3
$$

(Again, beware of the negative numbers.)

Much less important is the truncation function, which takes any integer and chops off the fractional part:

$$
\operatorname{trunc}(1)=\operatorname{trunc}(1.87)=1 \quad \operatorname{trunc}(-3.2)=-3
$$ Notice that trunc $(x)=\square x \square$ for all nonnegative x.

Quickies: What is $\square \square x \square \square$? What of $-\square x \square$?

Bunch o’ Terms

There's lots of terminology for functions:
A function has to be given a value from a specified set. (You can't give a city to the "squaring" function, nor a number to "father of"!) The set of objects that a function will accept is called the domain of the function.

The set of objects that a function might produce is called the codomain of the function.

If f is a function with domain A and codomain B, we say that f is a function from A to B and write $\mathrm{f}: A \square B$.

Examples:
The " +1 " function has domain and codomain Z (say)

The "father-of" function has domain and codomain equal to the set of humans

The domain of the "state-located-in" function is the set of cities, and its codomain is the set of states

More Terms

If $\mathrm{f}(x)=y$, we sometimes call y the image of x under f and we call x a preimage of y under f. [Why is y the image of x while x is a preimage of y ?]

Let A be a subset of the domain of f . Then we can write $\mathrm{f}(A)$ to denote the set of all values produced by f from "inputs" in A. That is, $\mathrm{f}(A)=\{b \mid b=\mathrm{f}(a) \square a \square A\}$. For example:

If f is the squaring function, then $\mathrm{f}([-2,4])=[0,16]$.

$$
\text { floor }([0.5,2.9])=\{0,1,2\}
$$

We also call $\mathrm{f}(A)$ the image of A under f. Note that $\mathrm{f}(A)$ is always a set.

The range of a function is the set of all values produced by the function. This is not necessarily the same as the codomain. For example, suppose $\mathrm{f}: \underline{\boldsymbol{Z}} \square \underline{\boldsymbol{Z}}$ is the squaring function. Then the range of f is the nonnegative integers, even though the codomain is all integers. Note that the range of f is the same as the image of the domain. [time for a blackboard picture]

1-1 Functions

Suppose f is a function, and suppose that f never produces the same result for two different arguments. Then we say that f is a one-to-one, or injective, function. The formal definition is that f is injective if $\mathrm{f}(x)=\mathrm{f}(y)$ implies $x=y$. (Do we believe that this is the same thing?)

What does this mean? It means that you can look at the "output" and determine the "input". Examples:

The " +1 " function is injective. If $\mathrm{f}(x)=\mathrm{f}(y)$, that is, if $x+1=y+1$, then it must be that $x=y$. You can't find two different values that +1 takes into the same value.

The "squaring" function is not injective. -3^{2} and 3^{2} have the same value.

The "father of" function and the "state-located-in" function are not injective. But the "capital-of" function, that takes a state and outputs a city, is injective. Are floor, ceiling, and trunc injective?
[Blackboard picture here]

Onto Functions

Suppose that f is a function, and for every element y of the codomain of f there is some x in the domain of f such that $\mathrm{f}(x)=y$. Then f is an onto, or surjective, function.

What does this mean? It means that nothing in the codomain is left out, everything in the codomain is "hit" by the function. Another way to say this is that a function is surjective if and only if its codomain equals its range.
[Blackboard picture]
Examples:
The +1 function on the integers is surjective, but on the positive integers it's not surjective. The squaring function on the reals is certainly not surjective. The "state-located-in" function is surjective, but not the "capital of" function. What of floor, ceiling, trunc?
(Note that surjectiveness depends critically on what we consider the codomain; by fiddling with the codomain we can change a functions surjectivity while keeping essentially the same function. Not so with injectivity.)

A function that is both injective and surjective is called bijective, or sometimes one-to-one onto. More on this later.

