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A wise gamester ought to take the
dice even as they fall, and pay quietly,
rather than grumble at his luck.

—Sophocles
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Administrivia
• http://denenberg.com/LectureJ.pdf

(You really should be looking at these notes!)

• Any further questions on the tests:  Office hours
today!

• Project 4 will be handed out Tuesday, due 10/14

• It’s too late to drop!



Brief Review
• Set, element of a set
• Subsets and proper subsets
• Set equality
• The empty set
• Set cardinality
• Power set
• Union and intersection; disjoint sets
• Zillions of laws about union and intersection
• Relative complements
• Universes and absolute complements
• Laws of complement
• Symmetric difference
• Duality [lightly]
• Venn diagrams
• Index sets [lightly]
• Examples of proofs & simplifications



Membership Tables
If you liked truth tables, you’ll like membership tables.

A membership table characterizes expressions involving
sets and set operators.   Suppose we have the expression

S   =   (A » (B–C))  «  (C » (–B))
There are eight possibilities for an element of the
universe:  It can be in A but not B or C, in A and B but
not C, in none of the three, in all of the three, etc.  The
membership table for S has a row for each possibility,
and for each row calculates whether an element with that
row’s membership properties is in S.    [see blackboard]

What can we do with a membership table?   Suppose we
make a membership table for another expression T and
the final column for T is the same as the column for S.
Then we can conclude that S = T, because any element x
must appear in one of the rows of the table, and that row
tells us either that x is in both S and T or neither of them.
So there can’t be any element that’s in S but not T or T
but not S, that is, S and T are equal.

[blackboard example of   (A « C)  »  (A–B) ]



Inclusion / Exclusion 2
Venn diagrams help us prove certain counting theorems.

Suppose we know that 1300 Tufts students pierce their
left ear, and 1700 Tufts students pierce their right ear.
How many Tufts students have pierced ears?  Answer:
We don’t have enough information to tell!   All we know
is that it can’t be more that 3000 or less than 1700.

The crucial piece of information is this:   How many
students have both ears pierced?   If we know this, we
can calculate the answer.  E.g., if we know that 800 have
both ears pierced, then there are 2200 with pierced ears.

Expressed set-theoretically, we’re using this fact:
| A » B |   =   | A |  +  | B |  –  | A « B |

[proof by Venn diagram, on the blackboard]

Here’s what’s happening:  If you just add together |A|
and |B|, you’re double counting anything that’s in both;
you correct for this by subtracting the number that were
double counted, namely, the things in A « B.
Only when A and B are disjoint (A « B = ∅) can you just
add their cardinalities to get the cardinality of the union.



Inclusion / Exclusion 3
We can extend this trick to three sets.   We get:
| A » B » C |   =

|A| + |B| + |C| – |A«B| –!|A«C| – |B«C| + |A«B «C|
[again, proof by Venn diagram]

In words:  If we just add A, B, and C together we double
count some stuff and triple count some stuff!
Subtracting the three pairwise intersections corrects for
the stuff that’s double counted, but overcorrects for the
stuff that’s triple counted because we subtract it three
times instead of twice.   We must add back in the stuff
that’s triple counted so that it gets counted exactly once.

Example:  Suppose the dessert choices at the all-you-
can-eat café are apple, mince, and cherry pie.   Suppose
100 people had apple, 120 mince, and 160 cherry.
There’s no way to tell how many had a dessert.  But if
we know how many had apple & mince, apple & cherry,
cherry & mince, and all three, we can figure it out.

Generalized to N sets, this idea becomes the beautiful
Principle of Inclusion and Exclusion.   Grimaldi 8.1.



Ordered Tuples
Intuitive Definition:  An ordered pair of objects is a pair
of objects put together in order.  If a and b are any two
objects, we write (a,b) to denote the ordered pair with
first component a and second component b.  (An ordered
pair is kind of like a set of two things, but with order.)

Functional Definition:  Two ordered pairs (a,b)  and
(c,d)  are equal if   a=c  and  b=d.

Note that (a,b) and (b,a) are not equal, unless a=b.

Be sure you understand the differences between the
ordered pair (a,b) and the set {a,b}.    E.g., {a,a} = {a},
but there’s no analogous statement about (a,a).

We can extend the concept of ordered pairs to ordered
triples (a,b,c), ordered quadruples, and in general
ordered n-tuples (a1, a2, a3, . . ., an).

For the curious only:  If we were doing this rigorously,
we’d define (a,b) as  { {a, b} , { a } }.   You might be
amused to verify that with this definition ordered pairs
have the properties described above.



Cartesian Product
With ordered pairs understood, we can tackle another set
operation.

Definition:  Let A and B be any two sets.   The Cartesian
product of A and B,  written  A ¥ B, is the set of all
ordered pairs in which the first component is a member
of A and the second component is a member of B.  In
symbols:

A ¥ B   =   { (x,y)  |   x Œ A   and   y Œ B  }

Example:  Let A = { 1, 8 } and  B = { 2,  8,  9 }.   Then
A ¥ B  =   { (1,2),   (1,8),   (1,9),   (8,2),   (8,8),   (8,9)  }

Example:  Z ¥ R  =  {  (3, 4.2),   (–999, p),   (8, 8),  . . . }

Elementary facts:
A ¥ B  does not  equal  B ¥ A  (unless A = B)
(A ¥ B) ¥ C  does not equal  A ¥ (B ¥ C)
| A ¥ B |   =   (| A |)(| B |)
For any set S,    S ¥ ∅  =  ∅ ¥ S  =  ∅



Intro to Probability
To calculate how likely it is that something will happen,
count the number of ways it can happen, and divide by
the total number of ways that anything at all can happen.

Example:  How likely is it that, if you toss a coin, it will
land heads?  That can happen in only 1 way, and there
are two things that might happen, so the answer is 1/2.

Example:  How likely is it that, if you pick a letter from
the alphabet, you’ll get a vowel?   There are five ways
this can happen (aeiou) and there are 26 ways that
anything can happen (a–z).  Dividing, the answer is 5/26.

Example:  How likely is it that, if you draw five cards at
random from a deck, you’ll five cards all of the same
suit?  The number of ways of getting such a hand is
4C(13,5)   [why?]  and the number of ways of drawing
five cards is C(52,5) as you painfully remember.   So the
probability of a flush is   4C(13,5) / C(52,5).

This is all the deeper we’re going in probability for now.
The next few slides say nothing more!  We just do it a bit
more carefully and with the standard terminology.



Experiments & Outcomes
Suppose we do something that might turn out in lots of
different ways, but we don’t know which will happen.
Examples:  flip a coin, toss a die, toss a hundred dice,
pick a card from a deck.  The thing we do is called an
experiment  (e.g., pick a card) and the result is called the
outcome of the experiment (e.g., the ace of clubs).

The set of all outcomes of an experiment is called the
sample space of the experiment and is usually denoted S.
Examples:

Experiment: Flip a coin.   S = { heads, tails }
Experiment: Toss a die.    S = { 1, 2, 3, 4, 5, 6 }
Experiment: Toss 2 dice.  S = { 2, 3, 4, 5, . . . , 11, 12 }
Experiment: Toss 2 dice.  S = { (1,1),  (1,2),  . . . , (6,6) }
Experiment: Buy a lottery ticket.     S = { win, lose }

We prefer sample spaces where each outcome is
“equally likely”, a concept that we can’t define (but we
know it when we see it!).  Such sample spaces are the
useful ones.  The third and fifth sample spaces above do
not have this property.  It’s sometimes hard to select the
sample space appropriately.



Probability
Assume that we have an experiment and a finite sample
space S of equally likely outcomes.   We define the
probability of an outcome x, written Pr(x), as  1 / | S |.

For example, if we toss a coin, Pr(heads) = 1/2.   If we
roll a die, Pr(3) = 1/6.  If we roll 2 dice, Pr((2,5)) = 1/36.
(If we buy a lottery ticket, Pr(win) is not 1/2, because
we’ve got a bad sample space!)

A subset of the sample space, that is, a set of possible
outcomes of the experiment, is called an event.   E.g.:
Toss a die.  The event “even” is the set { 2, 4, 6 }.
Toss 2 dice.  The event “total 8” is the set

 { (2,6),  (6,2),  (4,4),  (5,3),  (3,5) }
Pick a card from a deck.  The event “jack” is the set

{ jack of ß,  jack of ™,  jack of ®,  jack of © }
Toss a die.   The event “3” is the set { 3 }.    (An event
can contain only a single outcome!)
Toss 4 dice.   The event “total 30” is the empty set.  (An
event can have zero outcomes!)
Toss a die.  { 1, 5 } is an event.  (Any subset is an event.)



Pr(Event)
Suppose we have an experiment with sample space S.  If
E is an event, that is, E Õ S, we say that the probability
of E, written Pr(E), is   | E |   /   | S |.

This is exactly and only what we said a few slides back!
You count the number of outcomes in the event you’re
interested in (e.g., the number of flushes), and divide by
the total number of outcomes in the sample space (e.g.,
the number of five-card hands).  Assuming that the
outcomes in the sample space are equally likely, the
result is the probability of the event.

(Now you see why we often study probability in
conjunction with counting!)

The whole of section 3.4 is nothing but examples of this
technique.   Define the experiment, define a sample
space of equally likely outcomes, find the cardinality of
the sample space (| S |, the denominator), find the
cardinality of some event (| E |, the numerator), and
divide to find the probability of event E.



[Fuzzy Sets]
In our discussion of sets, an element is either a member
of a set or not.   There’s another notion of sets were
membership isn’t so strictly yes or no.

A fuzzy set is a set to which elements belongs to some
degree;  that is, the boundaries of the set are not sharp, as
in traditional sets.  Given an object x, it can belong to a
fuzzy set F with any real value from 0 to 1.

Example:  Let T be the fuzzy set of tall people.   A
typical basketball player might be 99% in T.   Larry
might be 80% in T.  Napoleon was 0% in T.

Note that this doesn’t mean “80% of Larry belongs to T”.
It means “Larry 80% belongs to T”, or “the degree to
which Larry belongs to T is 80%”.

In fuzzy sets, union and complement turn into max and
min.   So if x 80% belongs to F1 and 65% belongs to F2,
then x 80% belongs to F1 » F2, and x 65% belongs to
F1 « F2.

With fuzzy sets, we can avoid having to establish a
cutoff value for “tall” in order to have a set of tall
people.


