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SETS

A set of phrases learn’t by rote . . .
—Jonathan Swift

The union of the mathematician with
the poet . . . this surely is the ideal.
—William James, Collected Essays
and Reviews, ch. 11
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Administrivia
• http://denenberg.com/LectureI.pdf
• Anything to discuss from the exam?
• Next exam:  Monday 10/27, covers Ch  3, 5, and 4.1

Today:   Elementary set theory.



Sets
Although we informally talk about a set as being a
collection of objects, this isn’t much of a definition.
(Because then what’s the definition of “collection”?)
The notions set and element of a set are left undefined.
The term member is a synonym for “element”.

Notation:   We write x Œ S to mean that object x is an
element of set S,  x œ S to mean that object x is not an
element of set S.   We can specify a set in several ways.
The following all specify the same set:

S  =  {  1,  2,  3,  4,  5,  6,  7,  8,  9  }
S  =  {  1,  8,  7,  6,  6,  5,  4,  3,  2,  1,  9,  7  }
S  =  { the positive integers less than 10 }
S  =  { x  |   x Œ Z    and    1 ≤ x ≤ 9  }
S  =  { x Œ Z   |    1 ≤  x < 10  }

(The vertical bar is read “such that”.   Z  is the integers
since I don’t have the right font;  similarly Q,  N,  R, …)

Two sets are equal (informally) if they have the same
members.   That is, if A and B are sets we have

A  =  B     <=>    ("x)  x Œ A  ≡  x Œ B
We’ll see a more practical and rigorous definition later.



Subsets, Proper & not
Definition:  If A and B are sets, and every element of A is
also an element of B, then we say that A is a subset of B
and we write  A  Õ  B.

Here’s the picture:

Notice that according to our definition A can be a subset
of B even if B has no other elements.   (That is, the area
inside B but outside A might be empty.)    But if A Õ B
and B has at least one element not in A, we say that A is
a proper subset of B and we write A  Ã  B.

Theorem:
If  A Ã B,  then  A Õ B

If    A Õ B   and   B Õ C,   then    A Õ C
If    A Ã B   and   B Õ C,   then    A Ã C
If    A Õ B   and   B Ã C,   then    A Ã C
If    A Ã B   and   B Ã C,   then    A Ã C

The proofs are basically by picture.   Formal proofs are
in the text.   (The first is trivially by Conjunctive
Simplification.)

B A



Element  vs  Subset
It’s sometimes easy to confuse “x is an element of S”,
that is, x œ S, with “A is a subset of S”, that is, A Õ S.
This is especially true when S has sets as elements!

Example:
Let  N  be the set  { 1,  2,  3,  4 }.   Then we have 1 Œ  N,
and {1} Õ N, but it’s not true that {1} Œ N or that 1 Õ N.
We also have  { 1, 2 } Õ N and N Õ N.   No trouble here.

But now let
M  =   {  1,  2,  3,  4,  { 1, 2 },  {  3, 7  },  {  {  1 } } }

Note that M has seven elements.  Now it’s true both that
{ 1, 2 } Õ M  and also  { 1, 2 } Œ M!   It is still not true
that { 1 } Œ M  (why?).   And none of the following are
true:   7 Œ M,   { 7 } Õ M,   { 3, 7 } Õ M.

Notice that if X Õ Y then X must be a set, but if X Œ Y
then X may or may not be a set.  Y must be a set in both
cases!

(The word contains can be especially confusing.  Does
“A contains B” mean B Œ A or does it mean B Õ A?
Usually the former, but avoid the word if there’s any
chance of ambiguity!)



Equality again
Now we’re ready for a useful definition of equality:

Two sets A and B are equal if  A Õ B  and  B Õ A.

Why is this useful?  Because it gives us a way to test
equality that doesn’t involve testing all the elements in
some unspecified universe.   We just need to test each
element of A to see that it’s in B, and each element of B
to see that it’s in A.   If both are true, then A = B.

Typical proof that two sets A and B are equal:
(a) Suppose a Œ A.  Then . . .<stuff>. . . so a Œ B.
(b) Now suppose b Œ B.  Then . . .<stuff>. . . so b Œ A.
It follows that  A = B.

Furthermore, we’ll often be able to prove either A Õ B
or  B Õ A  or both in some more direct way.



The Empty Set
Just for fun, we’ll tackle this topic with classical rigor.

Definition:  An empty set is a set with no elements.
(Grimaldi begs the question by defining “the” empty set.
How does he know there’s only one?)

Lemma:  If S is an empty set, then S Õ X for any set X.
Proof:   We must prove that for all x Œ S,  x Œ X.  But
this is easy, since there are no x Œ S, so we’re done.

Theorem:  All empty sets are equal.
Proof:   Let S1 and S2 be empty sets.  Since S1 is empty,
S1 Õ S2 by the Lemma.  Since S2 is empty, S2 Õ S1 also
by the Lemma.  These two inclusions prove S1 =  S2.

It follows from this Theorem that there is only one empty
set.   So we are justified in speaking of  “the” empty set,
which we write as  ∅ or  {}.  It is also called the null set.

Consider the following five sets:
 ∅       { ∅ }        { { } }       { ∅, { } }        { {  {  }  }  }
Which are equal?  Which are elements of which?
Which are subsets of which?  How many elements does
each have?



Cardinality / Power Set
The cardinality of a set is the number of elements it
contains.   We write the cardinality of a set S as |S|.
Examples:

| { 0, 1, 2, 3, 4 } |    =    5
|  {  all primes between 2 and 20 } |    =    7

| ∅ |    =     |  {  }   |   =    |  {  unicorns  }  |     =    0
A set whose cardinality can’t be measured with any
nonnegative integer is an infinite set.  This is a useless
and vague definition;  we’ll do better later.

The set of all subsets of any set S is called the power set
of S and is denoted either P(S)  or  2S.    Examples:

P( { 1, 2 } )  =  {  ∅,  {1},  {2},   {1,2}  }
P(Z)  =   {∅,  Z,   { primes },  {7},  N,  . . . }

P(∅)  =  { ∅ }
Theorem:  For any set S, both ∅ and S are members of
P(S).
Theorem:   If S has cardinality k,  then P(S) has
cardinality 2k.   (We’ve done this proof a zillion times.)
Now you know why it’s called 2S.   Note that |P(∅)| = 1.
By the way, all this works for infinite sets too.



Set Operations
Just like we have addition and multiplication on
numbers, and Ÿ and ⁄ on propositions, we have standard
operations on sets.

Definition:  Suppose A and B are sets.   Then
A » B  =  { x  |  x Œ A   OR    x Œ B }
A « B  =  { x  |  x Œ A   AND   x Œ B }

We call A » B the union of A and B;  we call A « B the
intersection of A and B.

Example:   Let
A  =  {  all even integers  }
B  =  {  1,  2,  3,  4,  5,  6  }

C  =  {  –1,  1,  –3,  3,  –5,  5  }
Then   A « B =  { 2, 4, 6 },     B « C  =  { 1, 3, 5 },
B »  C  =  {  –5, –3, –1, 1, 2, 3, 4, 5, 6  },
and A « C = {  }, the empty set.

Terminology:  Two sets A and B are called disjoint if
their intersection is empty, that is, if  A « B = ∅.



Laws of » and «
The following are true for all sets A, B, and C.
The set U is the universe, an agreed-upon set that
contains everything under discussion.  (E.g., the integers
or the reals might be U.  There isn’t always a universe!)

Commutativity: A » B   =   B » A
A « B   =   B « A

Associativity: A » (B » C)   =   (A » B) » C
A « (B « C)   =   (A « B) « C

Distributivity: A » (B « C)   =   (A » B)  «  (A » C)
A « (B » C)   =   (A « B)  »  (A « C)

Idempotency: A » A  =  A
A « A  =  A

Identity: A » ∅  =  A
A « U  =  A

Domination: A » U  =  U
A « ∅  =  ∅

Absorption: A » (A « B)   =  A
A « (A » B)   =  A

Containment: A « B  Õ  A  Õ  A » B



Complements
Let A and B be sets.  The relative complement of B in A,
written A – B, is the set of things in A that aren’t in B:

A – B  =  {  x Œ A   |   x œ B }

Example:   Suppose that  A = { 1, 2, 3 },   B = {2},
and  C =  { 3, 4, 5 }.
Then  A – B  is  { 1, 3 },    C – B is equal to C,
A – C is  { 1, 2 },    C – A is { 4, 5 },
B – C is equal to B,  and  B – A is the empty set.

When a universe U is understood, we can define the
complement of A as the set of all things that are not in A.
We write A for the complement of A:

A  =  {  x Œ U   |   x œ A }
The complement of A is actually just  U – A.

As an example, if the universe is all integers and E is the
set of even integers, then E is the set of odd integers.

NOTE:  Normally the complement of A is written with a
bar over the A.  Until I figure out how to do this in
PowerPoint, I have to use a bar under the A.  This
notation is not to be used anywhere else!



More Relationships
Double Complement: The complement of A  (A 

with two bars)  equals A

DeMorgan’s Laws: (A » B)   =   A « B
(A « B)   =   A » B

Inverse Laws: A » A   =   U
A « A   =   ∅

The following statements are equivalent, that is, for any
sets A and B they are either all four true or all four false:

A   Õ   B
A » B   =   B
A « B   =   A

B   Õ   A
(How do we prove this?   There’s a trick:  We prove that
the first statement implies the second, then that the
second implies the third, the third implies the fourth, and
the fourth implies the first!   It follows by transitivity
(the Law of the Syllogism)  that each implies each.)



One Last Operator
Let A and B be two sets.   The symmetric difference of
A and B, written A D B, is the set

A D B   =   A–B  »  B–A
That is, A D B is the set of things that are either in A but
not in B, or in B but not in A.   Said yet another way, the
set A D B is the set of things that are either in A or in B
but not both.  [picture needed here]

Example:   Let  A = { 1, 2, 3 } and  B = { 3, 4, 5 }.  Then
A D B  is  { 1, 2, 4, 5  }.

Note that A D B  = B D A , which explains the name.

Theorem:  Two sets S and T are disjoint  if and only if
S » T  =  S D T.
Proof:   First assume S and T are disjoint.   Then clearly
S–T = S and T–S = T.  So the union of S–T and T–S,
which by definition is S D T, is equal to S » T.

Now assume S » T = S D T and assume that S and T are
not disjoint, i.e., there is some element x Œ S « T.
Clearly x is not in S–T (since it’s in T) nor in T–S (since
it’s in S), hence x is not in S D T by the definition of  D.
Since S D T = S » T it must be that x is not in S » T
either, which is false.  QED     [real proof by picture]



Duality Again
Definition:   Suppose F is any formula or expression
involving only variables that stand for sets, the operators
», «, and complement (overbar), and values U (standing
for some understood universe) and ∅ (the null set).
Then the dual of F, written Fd, is the expression obtained
from F by replacing every U with ∅,  every ∅ with U,
every » with « , and every « with ».

Example:   Let F be the expression   (A » B) «  C  = 0.
Then Fd is (A « B) » C = U.   Note that (Fd)d = F.

Theorem:   If  T is a theorem about sets containing only
the symbols described above, then Td is also a theorem.

The expression A Õ B cannot be “dualized” as written.
But we know that A Õ B is equivalent to the expression
A » B = B.   Taking the dual of this, we get  A « B = B,
which is equivalent to B Õ A.  This shows that the dual
of A Õ B is B Õ A.

Note how many of the equalities are duals of each other.



Venn Diagrams
In previous slides we’ve seen concepts presented by use
of fairly intuitive pictures.   These pictures are called
Venn Diagrams.   They lead to good intuitive
understanding (but don’t constitute rigorous proof).
Traditionally, sets are represented by circles, and the
understood universe U by an all-enclosing box.

[At this point we’ll draw some pictures on the board and
show some theorems by means of Venn Diagrams.  No
chance that I’m going to try to do it in PowerPoint.]

[We’ll also discuss, for fun, the use of Venn Diagrams to
prove the classical syllogisms in A, E, I, and O,
including the necessary extensions.]



Index Sets
(This is a slide about notation.)   We know how to write

Si=1
n   xi

It should come as no surprise that we can write

»i = 1 n  Si     =    S1 » S2 » S3 » . . . » Sn
where each Si is a set, and the same for intersection.

There is a more general way of using this notation.
Suppose we have any set I, and for each i Œ I we have a
set Si.   Then we can “union up” all the sets Si with

»i Œ I   =   { x  |   x Œ Si   for at least one  i Œ I  }
A set I used in this way, where each element of I labels
some set Si, is called an index set.  An index set need not
hold only integers;  it can hold all kinds of objects.

We also have

« i Œ I  Si  =  {  x  |  x Œ Si  for every  i Œ I  }
Example:   Suppose we use Q, the rationals, as an index
set, and for each rational number q Œ Q define Sq to be
the real numbers between –q and q inclusive.  Then

« q Œ Q  Si =  { 0 }



[Russell’s Two MDs]
Is every “collection of objects” a set?
The answer, surprisingly, is no!
Consider the following “set”:

P = { those sets that are elements of themselves }
or, said another way,

P = { X  |  X is a set and X Œ X }
For example, let S be the set of all sets.  Since S is itself a
set, it is a member of itself, that is, S Œ S!  Since P is, by
definition, the sets that have this weird property, we have
S Œ P.   Another example of a set in P is the set I of all
infinite sets.  Since I is itself an infinite set, we must
have I Œ I,  so  I Œ P.

Now we don’t really care about P.  We just care about:
N = {those sets that are not elements of themselves}

or
N = { X  |  X is a set and X œ X }

For example, Z is not a member of itself, since Z is not
an integer.  That is, Z œ Z, thus  Z Œ N.  Similarly for the
set of all dogs and the set of all finite sets.   Any set that
is not a member of itself  is, by definition, in N.



[Russell, contd.]
We now ask the following question:  Is the set N an
element of itself, or is it not?   That is, is it the case that
N Œ N, or is it the case that N œ N?  (Clearly it’s one or
the other!)

Suppose N Œ N.   Well, if  N Œ N  then N is not a
member of itself (since that’s the definition of N!).
That is, if N Œ N  then  N œ N, a contradiction.

So it must be that  N œ N.  But if N œ N, then, again by
the definition of N, it must be that  N Œ N, which we just
proved impossible!

Look what we did:  We assumed only that the set N
exists, and we proved a contradiction.  It follows by
every rule of logic that the set N, as specified, does not
exist.   It turns out that there are lots of sets that you can
specify but that do not exist.

This phenomenon is known as Russell’s Paradox.  It
forced a reformulation of set theory to take care of the
question of what could and couldn’t be considered a set.
In modern set theory, no set can be an element of itself.


