
MATH  22
Lecture H:   9/25/2003

PRACTICE
& REVIEW

Multiplication is vexation,
Division is as bad;
The Rule of Three doth puzzle me,
And Practice drives me mad.

—Anonymous; in
Lean’s Collecteana vol 4. p 53
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Administrivia
• http://denenberg.com/LectureH.pdf,

for what it’s worth

• Exam #1
– Monday, 9/29, 11:50–1:20

–Location Change:
Pearson Chemistry 106

– Covers Chapters 1, 2, and Section 5.5  (basically
half counting and half logic)

(As promised, I’m writing out the solutions to the review
problems.  They’re at the end of this document.  No
complaints about the lack of formatting, please.)



Answers to Emailed Queries



What You Need, Part 1

COUNTING
• How to identify different kinds of situations

– Permutations  vs  combinations
– Whether duplications are permitted
– Special case “at least one of each kind”
– Catalan numbers

• A handful of formulas
– P(n,r),  C(n,r),  C(n+r–1, r),  nr

– (1/(n+1)) C(2n,n)    (the Catalan formula)
– Rule of sum & product
– The binomial theorem
– Simple identities (maybe)

• When to use which formula, and how to
identify n and r!    (The hard part.)



What You Need, Part 2
LOGIC

• Propositional calculus
– Connectives and their meanings
– Truth tables
– Equivalences (“Laws”)
– Simplification

• Predicate calculus
– Quantifiers and their meaning
– Quantifier laws and equivalences

• Proofs
– Proof by truth tables
– Rules of Inference and their use
– Proof by contrapositive and contradiction
– Proofs of real mathematical statements



What You Need, Part 3
THE  PIGEONHOLE  PRINCIPLE

• If m pigeons occupy n pigeonholes and m > n,
then at least one pigeonhole contains two or
more pigeons.

• If m pigeons occupy n pigeonholes and m>kn,
then at least one pigeonhole contains k+1 or
more pigeons.

• If there’s anything more to say about this one,
please tell me what it is.



Practice Problems
Prove that P(n,n) = P(n,n–1) and explain why this is so
using a counting argument.

You have 2n objects, but n are identical and the rest
distinct (so that there are n+1 different kinds of objects).
In how many different ways can we select n objects out
of these 2n objects?

How many divisors does the number 1400 have?

Suppose you have a congress with 3 parties and 2n+1
indistinguishable seats.  How many ways are there to
divide the seats among the parties?  How many ways are
there to divide the seats so that no party has a majority?

In how many ways can the letters  a, a, a, a, a, b, c, d, e
be permuted such that no two a’s are adjacent?

(All these problems were taken without permission from Liu,
Introduction to Combinatorial Mathematics, my copy of which
is signed by the author!)



Practice Problems
Write out a truth table for this formula:

(((p ⁄ q)(p ⁄ ¬q) ⁄ (¬p)q)   ≡   q)    Æ    (pr ⁄ p(¬r))
Alternate:  Simplify the formula as much as possible,
giving the rules used in each step.

Find some big hairy proof somewhere in Chapter 2 of
Grimaldi and cover up all the reasons.  Supply them.
Don’t forget to give the name of each and the previous
steps it applies to.  Write out the conditional whose truth
table you would have to evaluate in order to do the same
proof;  note that you would have no way to do this if
there are any quantifiers in the proof!

Prove that the square root of 2 is irrational, that is, prove
that there do not exist two integers a and b such that
a / b  =  √2.    Hint:  Use contradiction.

We have said that the formulas   ($x)("y) p(x,y)   and
("y)($x) p(x,y)   are not equivalent.   Recall that an
equivalence is the conjunction of two conditionals.
For each conditional, either argue informally why it’s
true or give an example (that is, a p) that shows it’s false.



Practice Problems
[In each case, identify which are the pigeons and which
are the holes!]

How many people do you have to gather together in
order to guarantee that there will be two who have the
same first and last initials?

Show that if 5 points are selected in the interior of a
square of side 1, then there must be at least two that are
no farther apart then 1/√2.

You have a zillion socks in your drawer.  Some are red,
some are blue, some are green, some are purple, some
are black, and some are stroup.   If you’re in the dark,
how many socks do you have to pull out to guarantee
you have a pair?  How many socks do you have to pull
out to guarantee that you have n pairs all of the same
color?

You are sitting around cleaning your pistol when a flock
of m pigeons flies by.  Assuming that you never miss,
how many bullets do you have to shoot in order to
guarantee that there is at least one pigeon with k holes?



Solution
Prove that P(n,n) = P(n,n–1) and explain why this is so
using a counting argument.

Since P(n,r) = n! / (n–r)!  we have
P(n,n)  =  n! / (n – n)!  =  n! / 0!  =  n! / 1  =  n!

and
P(n,n–1)  =  n! /  (n – (n–1))!  =  n! / 1!  =  n! / 1  =  n!

Suppose I write down, in order, all but one of n objects.
In how many ways can I append the last object?  Only
one—there’s only one object left, hence only one choice.



Solution
You have 2n objects, but n are identical and the rest
distinct (so that there are n+1 different kinds of objects).
In how many different ways can we select n objects out
of these 2n objects?

How many selections are there that contain 0 of the
identical objects?  We must select n of the n distinct
objects, and this can be done in C(n,n) ways.

How many selections are there that contain 1 of the
identical objects?  We select any identical object (they’re
all the same, so there’s only one way to do this) and then
we must select n–1 of the others, which can be done in
C(n,n–1) ways.

Similarly, how many selections are there that contain i of
the identical objects?   There’s only one way to pick the
i, and then there are C(n, n–i) ways to pick the others.

All of these groups of selections are distinct, so we can
add them up.  The total is

C(n,n)  +  C(n,n–1)  +  C(n,n–2)  + . . . +  C(n, 0)
which, as we once proved, is 2n.



Solution
How many divisors does the number 1400 have?

First note that 1400 = (23)(52)(7).    Any divisor of 1400
must be a product of some of these prime factors, and
any product of these prime factors will divide 1400.

How many ways can we make a product out of these
factors?   We can multiply together

0, 1, 2, or 3 factors of 2
0, 1, or 2 factors of 5
0 or 1 factors of 7

That is, there are 4 ways to choose the number of 2s to
multiply, 3 ways to choose the number of 5s, and two
ways to choose the number of 7s.   By Rule of Product,
there are (4)(3)(2) = 24 divisors of 1400.

Note that this result includes 1 (where we choose to
multiply in zero 2s, zero 5s, and zero 7s) and also 1400
(where we multiply three 2s, two 5s, and one 7).



Solution
Suppose you have a congress with 3 parties and 2n+1
indistinguishable seats.  How many ways are there to
divide the seats among the parties?  How many ways are
there to divide the seats so that no party has a majority?

If we just want to divide the seats among the parties,
we’re asking for the number of positive integer solutions
to the equation

x1 + x2 + x3  =  2n+1
where the value of xi is the number of seats that the ith

party gets.   And this, in turn, is the number of ways of
choosing 2n+1 donuts from a bakery that has 3 kinds,
that is, the number of ways of choosing r=2n+1 things
from a set of n=3 with duplications allowed; the answer
is C(2n+3, 2n+1).

Now we want to subtract the number of ways in which
some party has a majority.  In how many ways can party
1 have a majority?  We count them by giving n+1 seats
to party 1, then distributing the remaining n seats among
the 3 parties, which can be done in C(n+2, n) ways.
Similarly, each of the other parties can have a majority in
C(n+2,n) ways.  Subtracting these, the answer to the
original problem is  C(2n+3, 2n+1) – 3 C(n+2,n), or
more simply  C(2n+3, 2) – 3 C(n+2, 2).



Solution
In how many ways can the letters  a, a, a, a, a, b, c, d, e
be permuted such that no two a’s are adjacent?

This is kinda easy.  The only way to separate the a’s is to
have them be at the first, third, fifth, seventh, and ninth
positions, with the four other letters between.  So the
answer is the number of ways to order four letters taken
out of four, that is, P(4,4), which is 4!

What if the problem asked the same thing about the
letters    a,  a,  a,  b,  c,  d,  e  ?



Solution
Write out a truth table for this formula:

(((p ⁄ q)(p ⁄ ¬q) ⁄ (¬p)q)   ≡   q)    Æ    (pr ⁄ p(¬r))
Alternate:  Simplify the formula as much as possible, giving
the rules used in each step.

The truth table would have 8 rows and I’m not writing it out.
But let’s simplify the formula.  Note that in simplifying we’re
allowed to use only Laws of Logic (which are equivalences),
not the Laws of Inference (which are only implications!).

The right hand side can be changed to    p(r ⁄ ¬r)  by
distributivity.    But  (r ⁄ ¬r) is always true  [Inverse] so this
simplifies just to  p  by Identity.

(p ⁄ q)(p ⁄ ¬q) is equivalent to p ⁄(q)(¬q) [distributivity].   But
(q)(¬q) is always false [Inverse] so this simplifies just to p
[Identity].   Now we have  p ⁄(¬p)q  which is equivalent to
(p ⁄ q)  [prove this!].    So the LHS is down to  (p⁄q) ≡ q.
This is equivalent to ((p⁄q) Æ q)(q Æ (p⁄q)).  The right side
of this is always true and can be dropped by Identity.

We’re now down to  (p⁄q) Æ q Æ p.   Recall that we can write
sÆt as (¬s)⁄t, so this is (¬(p⁄q) ⁄ q) Æ p, which by the same
trick is ¬(¬(p⁄q) ⁄q) ⁄p.   Using DeMorgan and Double
Negation, this is  (p⁄q)(¬q) ⁄  p which is p(¬q) ⁄ q(¬q) ⁄ p by
distributing.  But q(¬q) is always false and can be dropped,
leaving p(¬q) ⁄ p.  And we said this is equivalent to p.

So the whole original formula is just equivalent to p!  It’s T if p
is T and F if p is F.



Solution
Find some big hairy proof somewhere in Chapter 2 of
Grimaldi and cover up all the reasons.  Supply them.
Don’t forget to give the name of each and the previous
steps it applies to.  Write out the conditional whose truth
table you would have to evaluate in order to do the same
proof;  note that you would have no way to do this if
there are any quantifiers in the proof!

No chance, pal.



Solution
Prove that the square root of 2 is irrational, that is, prove
that there do not exist two integers a and b such that
a / b  =  √2.    Hint:  Use contradiction.

We will be using the following Lemma, proved in
Project 3:    If x is an integer,  x is even if and only if x2

is even.

We proceed by contradiction.  So assume that the
statement is false, that is, assume that there do exist
integers a and b such that a/b = √2.   Reduce the fraction
a/b to lowest terms, getting a (possibly) new fraction c/d
where c/d = √2 and c has no factors in common with d.

Squaring both sides, we see that c2/d2 = 2, so c2 = 2d2.
Thus c2 is even (since it’s twice an integer).  By the
Lemma, c is even.  So c = 2z for some z (by the
definition of “even”).   Substituting, we have (2z)2 = 2d2,
or 4z2 = 2d2, or 2z2 = d2.  So d2 is even.  Using the
Lemma again, d is even.  But we’ve now proved that c
and d are both even;  this is impossible, since c/d was in
lowest terms!  This contradiction completes the proof.



Solution
We have said that the formulas   ($x)("y) p(x,y)   and
("y)($x) p(x,y)   are not equivalent.   Recall that an
equivalence is the conjunction of two conditionals.
For each conditional, either argue informally why it’s
true or give an example (that is, a p) that shows it’s false.

Is it true that ($x)("y) p(x,y)  implies  ("y)($x) p(x,y) ?
Yes, it does.  Suppose the LHS is true.  This means that
("y) p(c,y) is true for some specific c (by Existential
Specification).    Now if p(c,y) is true for all y, then
certainly for all y there is some x such that p(x,y);  no
matter what y you use, c works!

Now, does ("y)($x) p(x,y)  implies ($x)("y) p(x,y) ?
No, it doesn’t.   We did this example in class;  suppose
for example that p(x,y) means x+y = 10.   Then surely the
LHS is true:  for all y there is such an x  (you can always
pick  y = 10–x).   But the RHS is false:   There is no x
such that x+y=10 for all y.



Solution
How many people do you have to gather together in
order to guarantee that there will be two who have the
same first and last initials?

There are 676 = 262 ways of picking two initials.  So if
we have 677 people, there must be two with the same
initials.

The people are the pigeons and the pairs of initials are
the holes.



Solution
Show that if 5 points are selected in the interior of a
square of side 1, then there must be at least two that are
no farther apart then 1/√2.

Divide the square into four:

The diagonal of each small square is 1/√2 long, so
within a small square two points can’t be farther apart
than this.   But one of the small squares must contain
two points by the Pigeonhole Principle!

The points are the pigeons and the small squares are
the holes.



Solution
You have a zillion socks in your drawer.  Some are red,
some are blue, some are green, some are purple, some
are black, and some are stroup.   If you’re in the dark,
how many socks do you have to pull out to guarantee
you have a pair?  How many socks do you have to pull
out to guarantee that you have n pairs all of the same
color?

The holes are the colors (types of socks) and the pigeons
are the socks.

If n=1 you obviously need 7 socks.  For general n,
remember that n pairs means 2n socks!   So we need at
least 2n pigeons in some hole, meaning 6(2n–1)+1 socks
minimum, or 12n–5 socks.   (We got this wrong in class,
failing to appreciate the +1/–1 problem.  See the next
page for another illustration.)

As someone cleverly pointed out, if you want 2 pairs of
socks that needn’t be of the same color, you need to pull
out 9 socks.   What if you want n pairs that needn’t be
the same?



Solution
You are sitting around cleaning your pistol when a flock
of m pigeons flies by.  Assuming that you never miss,
how many bullets do you have to shoot in order to
guarantee that there is at least one pigeon with k holes?

The answer is (k–1)m + 1.

[Don’t get confused by the +1 and –1 here:  The
generalized PP says that if there are more than km
pigeons (i.e., at least km+1) then there is at least one hole
with k+1 pigeons.   If we need only k pigeons in some
hole, as here, we need more than (k–1)m pigeons.]

The holes are the pigeons, and the pigeons are the holes!


