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QUANTIFIERS &
PIGEONHOLES

But I am pigeon-livered, and lack gall
To make oppression [and Math 22] bitter . . .

—Hamlet, Act 2, sc. 2
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Administrivia
• http://denenberg.com/LectureG.pdf
• Project 2, #4, and Homework 2, sect 1.4 #20

new grading standards
• Homework #3 due today,  #4 on the web
• Exam #1

– Monday, 9/29, 11:50–1:20, Robinson 253
– Covers Chapters 1, 2, and Section 5.5

• Part of Thursday’s class will be a review.
Bring questions, or (better) email questions to
me in advance (larry.denenberg@tufts.edu)

Today:  More quantifier rules of equivalence
and inference, proofs with quantifiers, the
Pigeonhole Principle



Quantifiers: Review
• Free variables and open statements
• Bound variables and closed statements
• Existential and universal quantifiers
• Dummy variables, scope of quantifier
• Range of variables; universe of discourse
• Multiple quantifiers, order of quantifiers
• Equivalence rules for negation (similar to

DeMorgan), leading to . . .
• Implicit relationship of " to Ÿ and of $ to ⁄
• Equivalence rules for distributivity:

" over Ÿ
$ over ⁄

• Inference (not equivalence) rules for
distributing " over ⁄ and  $ over Ÿ

• A few other quantifier rules



Yet More Q Rules
("x)p(x)   =>   p(c)     for any c in the universe

(The Rule of Universal Specification)
p(c)    =>    ($x)p(x)

(The Rule of Existential Generalization)
Presumably these are reasonably obvious.

If c is arbitrary,     p(c)   =>   ("x)p(x)
(The Rule of Universal Generalization)
This one is tricky.  It says that if you can prove that p is
true about c, without any assumptions about special
properties of c, then you could just as well have proved
that p is true about any c whatsoever, that is, p must be
true of all c in the universe.

In practice, c must have come from a use of  Universal
Specification.  Like this:  Suppose you know  ("x)p(x)
and deduce p(c).  This c is arbitrary;  it’s nothing special;
it stands for any c in the universe.  If later you deduce
q(c), then you can use Universal Generalization to
deduce ("x)q(x), since the proof of p(c) would have
worked as well for any c.



Contra{positive,diction}
This is just a brief review of these two terms and how the
principles behind them can be used in proofs.   (Not just
the formal proofs we’ve been doing; real-world proofs
use both of these all the time.)

The contrapositive of a conditional p Æ q is the
conditional ¬q Æ ¬p.  A conditional is equivalent to its
contrapositive.   So if you need to prove  p Æ q, you can
just as well prove ¬q Æ ¬p and it’s just as good.

A proof by contradiction works like this:  You have a
bunch of premises p1, p2, . . . , pn and you’re trying to
prove a conclusion C.   Instead, you can assume ¬C as a
new premise, and then prove any contradiction at all.
For example, you can prove r Ÿ¬r for any formula r, or
you can prove ¬pi where pi is one of your premises.
(Because then you have pi Ÿ¬pi by Conjunction.)

These two terms are somewhat related.   If you’re trying
to prove that p => q, you can work by contradiction and
assume ¬q and then prove ¬p.  But this just proves that
¬q Æ ¬p, the contrapositive, is a tautology.



Definitional “if”
Definition:   Let x be an integer.  We say that x is even if
there is an integer y such that x=2y.

Definition:  Suppose some people are playing a game.
We say that a player wins the game if that player has the
most points at the end of the game.

Hey, shouldn’t we be using “if and only if” here?   Taken
literally, nothing excludes the possibility that x is even in
some cases where there’s no such y!   The English says

(a player has the most points) Æ  (that player wins)
but really the intent must be

(a player has the most points)  ≡  (that player wins)

Grimaldi’s answer:  Definitions are traditionally phrased
as implications but should be read as biconditionals.

Denenberg’s answer:   A definition is neither a
conditional nor biconditional.   It just records that we can
use one term or phrase as shorthand for another phase.
Some use “if” in idiomatic English to state a definition,
but it’s not the same “if” as “if-then” or “if-and-only-if”.

Take your choice.  Don’t be confused.  End of topic.



The Pigeonhole Principle
If m pigeons occupy n pigeonholes and m > n, then at
least one pigeonhole contains two or more pigeons.

Proof:   Suppose otherwise, namely that each hole
contains at most one pigeon.   Since there are n holes,
there can be at most n pigeons.  But there are m pigeons,
and m>n.  Contradiction.

[Why pigeons and holes?  The Principle goes back to
Dirichlet who stated it (in French) using chests of
drawers.  “Pigeonholes” are the little compartments in
old-fashioned rolltop desks.]

More loosely stated:  If sufficiently many objects are
distributed over not too many classes, then at least one
class contains many of these objects.  (This is from the
paper of Erdös in which the PP is first stated in English.)

Examples:
If there are 8 people in a room, there must be two who
were born on the same day of the week.  If there are 13,
there must be two born in the same month.  If there are
367, there must be two with the same birthday.



More Pigeons
Suppose S is a set of six integers, each between 1 and 12
inclusive.  Then there must be two distinct nonempty
subsets of S that have the same sum.
Proof:   The sum of all the elements of S is at most
7+8+9+10+11+12 = 57.   So the sum of the elements of
any nonempty subset of S is at least 1 and at most 57;
there are 57 possibilities.  But there are 26–1 = 63
nonempty subsets of S.  So there must be two with the
same sum.  (The book does a trickier analysis to show
the same result where the numbers can go up to 14.)

Here’s an obvious generalization of the PP:  If m pigeons
occupy n pigeonholes and m > kn, then at least one of the
pigeonholes must contain at least k+1 pigeons.  (The
original version we stated is the case k=1.)

Example:   If you have 37 people in a room, there must
be three who were born in the same month.  (n=12, k=3)
If you have 733, there must be three with the same
birthday.  (n=366, k=2).
(Digression:  How many people do you need to have a 50/50
chance that there are two, or three, with the same birthday?)



Sequences & Subsequences
A sequence of numbers is, well, a sequence of numbers.
<8, 3, 9, 2, 11, 4, –2, 0, 16, 1, 23, 10, 15, 12, 6, 14, 19>

This is a sequence of length 17.  Note that order matters
(that’s the difference between a sequence and a set).
Sequences can have duplicates; this one happens not to.

A subsequence of a sequence is just what you’d think:
<8, 9, 11, 0, 16, 23, 15, 12>

(Digression:   Given a sequence of length n, how many
subsequences does it have?)

Theorem:  Let n be an nonnegative integer and let S be a
sequence of length n2+1 containing distinct numbers,.
Then S must contain either an increasing or a decreasing
subsequence of length n+1.

So, for example, the sequence above must have either a
decreasing or an increasing subsequence of length 5.

We prove this Theorem using the Pigeonhole Principle!



Proof
We prove the Theorem by contradiction, that is, we
assume the negative of the conclusion and prove an
absurdity.   So suppose there is an n >0, a sequence

S  =  <a1, a2, a3, . . . am>
where  m = n2 + 1, all the ai are distinct, and S has no
ascending or descending sequence of length n+1.

For each position i in the sequence we calculate a pair of
integers (xi,yi) defined like this:

xi is the length of the longest increasing subsequence
of S that ends at ai, and
yi is the length of the longest decreasing
subsequence of S that ends at ai.

Example:  Let S be  <8, 2, 4, 5, 1, 3>  and look at i=4.
x4 is 3 (because of <2,4,5>)  and y4 is 2 (because of
<8,5>).  Similarly, x6=2;  y5=3;  and  x1=x2=x5=y1=1.

In each pair (xi,yi) both numbers are at least 1.  (Why?)
Furthermore, since we’ve assumed that there’s no
ascending or descending subsequence of length n+1 in S,
both numbers must be £ n.   Summarizing:   for each
position i in S we have a pair of numbers (xi,yi) defined
as above, where 1 £  xi, yi  £  n.



Proof, continued
Question:  How many different pairs (x,y) can there be?
This is an easy counting problem:  If each number can
independently be an integer from 1 to n, there are at most
n2 different pairs.

Now apply the pigeonhole principle:  There are at most
n2 different pairs but there are at least n2+1 places in S.
By the Pigeonhole Principle, there must be two places in
S (call them i  and  j) with the same pair:

<......  ai, ...... aj, .......>
where xi=xj  and  yi=yj.

But look:   All the ai are distinct, so either ai<aj or ai>aj.
Suppose ai<aj.   By the definition of xi there is an
increasing subsequence of length xi ending at ai.  But
clearly if we tack aj onto the end of such a subsequence
we get an increasing subsequence of length xi+1 ending
at aj.  So the longest increasing subsequence ending at aj
has length at least xi+1, that is, xj is at least xi+1, and so
xi=xj  is impossible.
If ai>aj, a parallel argument shows that yi and yj can’t be
equal.   In either case, it can’t be that xi=xj  and  yi=yj!

This contradiction proves that our assumption was false;
it cannot be true that there is neither an ascending nor a
descending subsequence of S with length n+1.     QED



Ramsey’s Theorem
Ramsey’s Theorem is a profound generalization of the
Pigeonhole Principle.   We’re not going to prove it.

Let r ≥ 1 be an integer, and let q1, q2, ..., qn be integers all
≥ r.   Then there exists some integer m (which depends
on r, q1, q2, ..., qn) such that any set S with at least m
elements has the following property:
For any way of partitioning the subsets of S that have
exactly r elements into n groups A1, A2, ..., An, there is
some j and some subset T of S such that  (a)  T has qj
elements, and  (b) every subset of T that has exactly r
elements is a member of Ai.

When r=1 and all the qi are 2, then m=n+1, and the
Theorem says that if you break up a set with n+1 or more
elements into n subsets, at least one of those subsets has
at least 2 elements.  This is the Pigeonhole Principle.

An example with r=3, n=2, q1=q2=3 (for which m = 6):
Given any 6 people, either there are 3 who have never
met each other, or there are 3 all of whom have met each
other.

[Pause for Erdös anecdote about n=2, r=q1=q2=5 or 6.]


