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INFERENCE   &
 QUANTIFICATION

Sixty men can do a piece of
work sixty times as quickly as
one man.  One man can dig a
post-hole in sixty seconds.
Therefore, sixty men can dig a
post-hole in one second.

—Ambrose Bierce,
The Devil’s Dictionary
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Logical Implication
Suppose that F and G are propositional formulas such
that any interpretation of their variables that makes F
true also makes G true.   Then we say that F logically
implies G,  and we write  F fi G.  For example, formula
p(¬q)r  logically implies  formula  pÆq, since whenever
the former is true, the latter is true.

(In this case it doesn’t go the other way:  pÆq can be
true with p(¬q)r false.  This doesn’t matter.)

F fi G  is always true if F is any tautology, that is, any
tautology implies any formula.  Similarly, any formula
implies any contradiction.

Theorem:   F fi G   if and only if  F Æ G is a tautology.

This is the same thing we had with logical equivalence:
It expresses something about propositions within the
language of propositions.   It says that two propositions
have a certain relationship to each other (namely, one
logically implies the other, i.e. we can infer one from the
other) exactly when a certain new proposition formed
from them has a particular quality (namely, it’s a
tautology).  We often use this theorem without thinking,
blurring the distinction between fi and Æ.



Inference
One thing we can do with logic is to formalize chains of
mathematical reasoning.   The result is a format for
proofs that probably looks much like proofs you once did
in elementary geometry, where each step had to be
justified by a previous theorem or construction.

We are going to formalize purely logical proofs, called
arguments in the text.  (Later we’ll do mathematical
proofs the same way.)   A formal proof is a sequence of
steps, each of which is logically implied by preceding
steps.   As part of the proof, we justify the implications.

An argument has premises, that is, things we assume,
and a conclusion that is to be proved from these
premises.  We write an argument like this:

P1

P2

P3

———
C

…where the Pi are premises and C is the conclusion to
be proved.  (There can be any number of premises.)



Proofs
A formal proof in our style will look like this:

    Steps Reasons
1)     F1 R1

2)     F2 R2

3)     F3 R3

    … …
n–1)     Fn–1 Rn–1

n)         C Rn

Each line has a formula Fi which is justified by reason Ri.
Note that the conclusion also needs a reason.

And what is a valid reason?   A reason can be either
–  the word “Premise”, meaning that the formula is
one of the things we’re assuming, or
–  the application of one or more Rules of Inference
to one or more of the formulas on preceding lines.

The Rules of Inference are the logical rules that we live
by in our proofs.  The Rules of Inference as defined in
the book are presented on the next slide.  After we see
them we can try a proof.



Rules of Inference
From pÆq and p, infer q.                            (Detachment)
From pÆq and qÆr, infer pÆr.                     (Syllogism)
From pÆq and ¬q, infer ¬p.                   (Modus Tollens)
From p and q, infer pq.                                (Conjunction)
From p⁄q and ¬p, infer q.           (Disjunctive Syllogism)
From ¬pÆ(any contradiction), infer p.    (Contradiction)
From pq, infer p.                  (Conjunctive Simplification)
From p, infer p⁄q.                 (Disjunctive Amplification)
From pq and pÆ(qÆr), infer r.          (Conditional Proof)
From pÆr and qÆr, infer (p⁄q)Ær       (Proof by Cases)
From pÆq, rÆs, and p⁄r, infer q⁄s.

(Constructive Dilemma)
From pÆq, rÆq, and ¬q⁄¬s, infer ¬p⁄¬r.

(Destructive Dilemma)

Each of these rules is proved by proving that the
associated conditional is a tautology, as in the first slide
of today’s lecture.  E.g., to prove that pÆq and p
together logically imply q, you must prove that

((pÆq) Ÿ p)  Æ  q
is a tautology.  (You can do this, e.g., with a truth table.)



Using the Rules
Suppose we know both  rsÆt  and rs.  Can we infer t?
It looks like this inference can be justified by the
Detachment Rule.  Is it?  We want to be able to use the
Rules as patterns where we can substitute anything we
like for the variables.  This is permitted by the following
Theorem, which the text calls the First Substitution Rule:

Suppose F is a tautology and p is any letter variable in F.
Then if you substitute any formula for every occurrence
of p in F, the result is another tautology.

For example, since
((p Æ q)  Ÿ  p)   Æ   q

is a tautology, we can substitute rs for p and t for q to get
((rs Æ t)   Ÿ   rs)   Æ   t

which, by the Theorem, is a tautology.

This tautology proves that rsÆt and rs logically imply t,
which is just what we wanted!

The bottom line is that when you use a Rule of Inference
you can substitute any formula you like for any of its
variables.  Remember that you must substitute the same
formula at each point the variable occurs in the Rule!



A Sample Proof
(¬p ⁄ ¬q) Æ (r Ÿ s)
r Æ t
¬t
—————————
p

Steps      Reasons
1)  r Æ t     Premise
2)  ¬t      Premise
3)  ¬r      Modus Tollens on 1 and 2
4)  ¬r ⁄ ¬s      Disjunctive Amplification on 3
5)  ¬(r Ÿ s)      DeMorgan on 4
6)  (¬p ⁄ ¬q) Æ (r Ÿ s)  Premise
7)  ¬(¬p ⁄ ¬q)      Modus Tollens on 6 and 5
8)  p Ÿ q       DeMorgan/Double Negation on 7
9)  p Conjunctive Simplification on 8

Note that we’ve not only used the Rules of Inference (fi),
we’ve also substituted equivalent formulas (<=>) as needed.
This is OK by the substitution theorem of last lecture.
You should definitely try a few of these yourself.



Two Other Tricks
•If the conclusion of an argument has the form pÆq,
you can make p a premise and make q the conclusion.

P1 P1
P2 P2
P3 P3

        ——— p
p Æ q          ———

q
•You can take any conclusion whatsoever, assume its
negation as a premise, and prove any contradiction:

P1 P1
P2 P2
P3 P3

        ——— ¬C
C           ———

(any contradiction)

  Note that these aren’t “reasons”, they’re ways to change
what you’re trying to prove to make the proof easier!
(That is, you do them in advance, before anything else.)
Each trick is justified because the conditionals
associated with the two inferences are equivalent.



Quantifiers
The following utterance is not a proposition:

x2  =  49
The reason, as we recall, is that the variable x is free:  It
can stand for anything we like, and the truth value of the
utterance depends on what it stands for.  We call a
formula with free variables an open statement.

Suppose we write instead
There exists some number  x  such that x2  =  49

This utterance is a proposition (and in fact a true one).
Variable  x  is no longer a free variable;  it’s just a
placeholder, used to keep track of some unspecified
value—the statement is about the existence of that value.

The process of making a free variable into a bound
variable—a placeholder—is called quantification.
There are two principle types of quantification:

Universal  quantification:   “for all”   (symbol ")
Existential  quantification:   “there exists”  (symbol $)

The example above is an existential quantification,
which would be written like this:

($x)  x2  =  49
Here is an example of universal quantification:

("x)  x2  >  0
The symbols  "  and $  are called quantifiers.



Quantifier Basics
1)  The variable bound by a quantifier, being just a
placeholder, can be any variable at all.  For example,
these two statements are exactly the same:

($x)  x2  =  49
($y)  y2  =  49

2)  Quantified statements are propositions;  they can be
combined with connectives like any other statements.

(("x)(x2  > 0)  ⁄ ($x)(x–1 = 20))   Æ   ("y)(y2 = 49)
This formula has form (p⁄q)Ær where p is the statement
("x) x2 > 0, and q is the statement ($x) x–1 = 20.  These
statements each stand by themselves;  and in particular
the x in the first has nothing to do with the x in the
second!   We could change the two xs in the second
statement to ys and nothing is affected.  We could also
change the two ys in the last statement to xs or zs.

3)  Terminology:  In a quantified formula, the formula
part is called the scope of the quantifier;  the quantifier is
said to govern the formula in its scope.   In the above
example, the  x  of  x–1 = 20  has nothing to do with the
x  of  x2>0  because the xs are in the scopes of different
quantifiers.



Multiple Quantifiers
A formula can have more than one free variable, in
which case we can quantify all or none of them.  The
formula is open unless all its variables are bound  (in
which case it’s a closed statement and is true or false).

($x)  x + y  =  17               [open]
("y) ($x)  x + y  =  17            [not open]

In the second example, the scope of ($x) is  x+y = 17.
The scope of ("y) is ($x) x+y = 17, that is, ("y) governs
a formula that starts with an existential quantifier.

The order of quantifiers can matter!   Consider the last
formula above.  It says that for every y, there is some x
such that x+y=17.   Surely this is true.  (If y=7 we can
take x=10.  If y=40 take x=–23, etc.)   But consider

($x) ("y)  x + y  =  17
This closed statement says that there is some x such that
for all y we have x+y=17.   But there is no such x, so this
statement is false.  The difference is that now we must
pick x first, independent of y.   In the previous example,
y is specified first, so x can be picked based on y and we
can choose different xs for different ys.



Quantifier Facts, cont
The order of quantifiers doesn’t always matter. Example:

("x)("y)  xy = yx
This statement is true, and remains true if we exchange
the quantifiers.   It turns out that you can swap
quantifiers if they’re of the same type, and not otherwise:
("x)("y) is the same as ("y)("x), and ($x)($y) is the
same as ($y)($x).   Sometimes we write ("x,y,z) to mean
("x)("y)("z) and similarly for ($x,y,z).

When we say “for all x”,  what x are we talking about?
In    ("x)($y) x=2y   we’re presumably talking about
numbers;  this statement is false if  x  can be a bird.  The
set of objects over which a quantified variable ranges is
called the universe of discourse or just the universe.
Choice of universe matters: the statement here is true in
the universe of real numbers but false in the universe of
integers.  Universes are always assumed to be nonempty.

Notation:  We use expressions like p(x) to stand for
formulas with a free variable x.   Similarly, p(x,y) is a
formula with two free variables, etc.   So ($x)p(x)  is
read  “there exists some x such that p(x)”  or even, more
simply, “p is true of some x”.      Another example:
("x)($y)q(x,y)   means   “for all x, there is some y such
that q(x,y) is true” (or “. . .such that q is true of x and y”).



Rules of Negation
Consider the statement

¬ ($x) p(x)
which says “it is not the case that there exists some x
such that p is true of x”, or “there is no x such that p(x)”.
Clearly this is the same as

("x) ¬p(x)
which says “for all x, p(x) is false”.    In fact, the two
statements are equivalent.

And what about
¬ ("x) p(x)

which says “it is not the case that p is true of all x”.
This is clearly equivalent to “there is some x such that
p(x) is false”, which is written

($x) ¬p(x)

These are the rules for quantifiers and negation:  When
you push the negation sign across a quantifier, you flip
the quantifier.   (Does this remind you of DeMorgan’s
Laws?  It should.  After all, " is just a big Ÿ, and $ is
just a big ⁄.)



Distributing Quantifiers
A couple of equivalences:

("x)(p(x) Ÿ q(x))   <=>   ("x)p(x) Ÿ ("x)q(x)
($x)(p(x) ⁄ q(x))   <=>   ($x)p(x) ⁄ ($x)q(x)

(Are these reasonably obvious?)   Said another way, you
can distribute " over Ÿ, and you can distribute $ over ⁄.
Remember:  " is just a big Ÿ, and $ is just a big ⁄!

But if we try to mix " with ⁄ or $ with Ÿ it doesn’t go so
smoothly.   Look what happens:

("x)p(x)  ⁄  ("x)q(x)
("x)(p(x) ⁄ q(x))

The first of these says that either p is true of all x, or q is
true of all x.  The second says that either p or q is true of
every x.  Are these the same?   No!   If the first is true,
the second is true, but the second may be true and the
first one false!   (Suppose p(x) is “x is even” and q(x) is
“x is odd”.   Then surely for all x one or the other is true,
but it’s not true that either everything is even, or
everything is odd!)
So we have

(("x)p(x) ⁄  ("x)q(x))   fi   ("x)(p(x) ⁄ q(x))
that is, the first statement logically implies the second,
but the statements aren’t equivalent!



Q, continued
The same thing happens if we try to distribute $ over Ÿ:

($x)(p(x) Ÿ q(x))
($x)p(x)  Ÿ  ($x)q(x)

The first statement says “for some x, both p and q are
true of x”.   The second says “for some x, p is true of x,
and for some x, q is true of x.”  The trouble is obvious:
In the second case, it needn’t be the same x!
(If p(x) is “x is a Tufts math professor” and q(x) is “x is
smart”, one says there is a smart Tufts math professor,
but the other says that there is a Tufts math professor,
and someone—maybe someone else—is smart.)
Again, we have implication but not equivalence:

($x)(p(x) Ÿ q(x))    fi   ($x)p(x)  Ÿ  ($x)q(x)

Another:
("x)p(x)    fi   ($x)p(x)

This says that if every object satisfies p(x), then at least
one object does!   It’s true in every nonempty universe.

Last one:
If p(x)<=>q(x), then both ("x)p(x) <=> ("x)q(x) and
($x)p(x) <=>($x)q(x)  are valid equivalences.



[Words into Symbols]
The funnest thing about quantifiers is learning to use them
to express, in the language of logic, relationships normally
expressed in English.   Examples (from Quine):

“There are smiles that make you blue”          ($x)(p(x)q(x))
Here p(x) is “x is a smile” and q(x) is “x makes you blue.”

“A lady is present”                                        ($x)(p(x)q(x))
i.e., the same basic form, but consider:
“A scout is reverent”                               ("x)(p(x) Æ q(x))
which shows how capricious English idioms can be!
Note how it’s critical that  F Æ T evaluates to T.

“No men are perfect”                            ("x)(p(x) Æ ¬q(x))

Can you do these?   Be sure to define p and q!
– Blessed are the meek.
– There is no god but Allah.
– All that glisters is not gold.
– The rule applies to everyone.
– We should all be as happy as kings.
– A policeman’s lot is not an ’appy one.



[An Awesome Proof]
Suppose G is a game played between players White (W)
and Black (B), and that G has the following properties:

– W plays first, and the players alternate moves
– G is guaranteed to end after a finite number of moves
– G has no ties;  when the game ends, W wins or B wins
– both players always have all information about what’s

going on  (e.g., there are no hidden cards)
– the game has no random elements (e.g. dice).

Theorem:  If G is a game as described above, then one of
the players has a winning strategy, that is, a way to play
from the beginning that he can use to always force a win.

Proof:  Denote W’s first move by w1,  B’s first move by
b1, etc., and let N be the maximum possible number of
moves.   To say “W has a winning strategy”  is to say

($w1)("b1)($w2)("b2)...($wN)("bN)  W wins
Suppose W does not have a winning strategy.  That is

¬ ($w1)("b1)($w2)("b2)...($wN)("bN)  W wins
By the rules of quantifier negation, this means

("w1)($b1)("w2)($b2)...("wn)($bN)  ¬(W wins)
Since either W or B must win, this is the same as

("w1)($b1)("w2)($b2)...("wN)($bN)  B wins
But this statement says that B has a winning strategy!


