
MATH  22
Lecture D:   9/11/2003

CATALAN NUMBERS

         for life’s not a paragraph
         And death i think is no parenthesis.

—e. e. cummings, Since feeling is first

         All animals are equal, but some
         animals are more equal than others.

—George Orwell, Animal Farm
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Administrivia
• No office hours today (plane at 7:30!)
• Left over:  Why is the Twin Prime

conjecture so difficult?
• Academic Resource Center for extra help:

http://ase.tufts.edu/arc
• http://denenberg.com/LectureD.pdf
• Project 2 handed out, due Tuesday
     A correction:   In #4 just do the case n=10,

not  n = 1, 2, . . .,10

Today:  Lots o’ stuff left over from last lecture;
Catalan numbers and their applications;
maybe finish early for review



Parentheses
How many ways can we write n pairs of parentheses?
This is easy:   We need to write down 2n symbols, of
which n are left parentheses (which we call “open”) and
n  are right parentheses (which we call “close”).  So, of
the 2n symbols, we just need to choose which are the
opens, and the closes take care of themselves.
The answer is clearly  C(2n, n).
E.g.   For n=1  we get   C(2,1) = 2, namely  ()  and   )( .
For  n=2  we get  C(4,2)=6, namely

(())        ()()        ())(        )(()        )()(        ))((
(What happens for n=0?)

Now, how many ways can we write n pairs of
parentheses such that the result “makes sense”?
For n=1 only   ()   makes sense,  for n=2 only the first
two of the ways written above make sense.

We prove the following:  The number of bad
arrangements of parentheses is C(2n, n–1).
Therefore the number of sensible parenthesizations is

C(2n, n)  –  C(2n, n–1)



When Parentheses Go Bad
Here’s how we count the bad parenthesizations:   We
consider all strings that contain  n–1  opens and n+1
closes (making a total of 2n parentheses).   Obviously
there are C(2n, n–1) such strings by the usual argument:
choose n–1 places to put opens out of  2n  total positions.
We will show that the number of strings with n–1 opens
and n+1 closes is the same as the number of strings with
n opens, n closes, and bad parenthesization.  Once we do
this, the proof is finished.
)Pause to fully comprehend and believe the strategy.(

Our goal is to prove that two sets have the same size.
We’ve done this before, but I’m going to be much more
careful (i.e., nitpicking) here, just so everyone
appreciates what’s involved, and because I’m not happy
with Grimaldi’s proof!   To review, we want to prove
that the following two sets have the same size:

X, the set of badly-parenthesized strings that contain
n opens and  n closes (thus with a total length 2n).

Y, the set of all strings that contain n–1 opens and n+1
closes  (again, total length 2n).



Proving Set Equivalence
How do we show that two sets X and Y have the same
size?   The typical way is to show how to take any  x
from X and construct from it some y in Y, such that from
different xs we get different ys, and such that every y is
constructed from some x or other.
If we do this, then X and Y can be matched up one-to-one
with nothing left over.   Each of the requirements must
be fulfilled, otherwise the sets might have different sizes!
(We’ll study this whole situation later, more abstractly.)
As I said, we’ve done this informally several times in previous
lectures, but without being this careful to touch each base.

Here’s another way to do it, just as good:
– Show that from each x we can construct a y, such that

different xs lead to different ys, and
– Show that from each y we can construct an x, such that

different ys lead to different xs.

In the current case, we must:
– Show how to take a badly-parenthesized string

containing  n  opens and  n  closes, and construct from
it some string with  n–1 opens and n+1 closes.

– Show how to take any string of n–1 opens and n+1
closes, and construct from it a badly-parenthesized
string with  n  opens and  n  closes.

In each case we must show that if we start with different
strings then the strings we construct are also different.



Construct a y from an x
We start with a badly-parenthesized string containing
exactly n opens and n closes.                  ( ( ) ( ( ) ) ) ( ) ) (

What does “badly-parenthesized” really mean?  It means
that at some point there are more closes than there have
been opens!   )Pause to appreciate this point.(

Here’s the construction:   Find the first place where
there’s one close too many, that is, a close that doesn’t
have an open.  Starting just after that close, flip all opens
to closes and all closes to opens.            ( ( ) ( ( ) ) ) ) ( ( )

What’s in the resulting string?   Well, the portion we
didn’t flip has one extra close.  So the portion we did flip
has one extra open.  That is, one extra open has become a
close, so the final resulting string has one extra close;  it
has n–1 opens and n+1 closes, as claimed.

Do two different starting strings produce two different
ending strings?   There are two cases.  (1) If two strings
are the same up to the first extra close but then differ,
they’ll differ after the flipping since the same chunk of
each will be flipped.  (2) Otherwise, the two strings must
differ before the first point where either has an extra
close (why?).  In this case they’ll still differ after the
flipping since we don’t touch the part where they differ!
(This proof is perfectly valid, if a little handwaving.)



Construct an x from a y
This time we start with a string that has n–1 opens and
n+1 closes.

This second construction is actually identical to the first:
Starting just after the first spot where there’s an extra
close, flip all the closes to opens and all the opens to
closes.  The only slight difference is in a justification:
How do we know that such a spot exists?  In the previous
construction, there had to be such a spot because of the
bad parenthesization.  Here, it’s because we know that
there are more closes in the starting string.

What’s in the resulting string?  Say that the part we
didn’t flip has k opens and k+1 closes (we know it has
one extra close).  So the part we flipped had n–k–1 opens
and n–k closes before the flip, hence n–k–1 closes and
n–k opens after the flip.   Adding, we see that the whole
string after the flip has n opens and n closes.  And it’s
certainly badly parenthesized since the part we didn’t
touch was itself badly parenthesized!

Finally, do different starting strings yield different
ending strings?   Since this construction is identical to
the other, the proof is exactly the same.



Catalan Numbers
The numbers

Cn  =  C(2n, n) – C(2n, n–1)
are called the Catalan Numbers after a Belgian
mathematician of the early 19th century.

Fundamental identity:
Cn  =  C(2n, n) – C(2n, n–1)  =  C(2n,n) / (n+1)

Unenlightening proof:  Massage one side algebraically
into the other.   (You will be doing this.)

The identity, rephrased:  Of all the possible ways of
writing down  n  pairs of parentheses, exactly one in n+1
of these ways makes sense.

Proof that promotes understanding:  Arrange the C(2n,n)
ways of writing  n  pairs of parentheses into clumps.
Each clump should have exactly one sensible
parenthesization and exactly n bad parenthesizations.
Thus   (a) the number of clumps is the answer we want,
and     (b) each clump has exactly n+1 things in it.
The answer then is clearly   C(2n,n) / (n+1).

Regrettably, I don’t know a way of making these clumps.
So the unenlightening proof is all we’ve got.



Uses of the Catalan Numbers

The text describes other sets that are counted by the
Catalan numbers, e.g.

– The paths from point (0,0) to point (n,n) where each
step is either RIGHT or UP, and where the path never
goes above the line from (0,0) to (n,n)

– The ways of arranging a sequence of +1 and –1 such
that there are an equal number of each and such that the
sum at any point is nonnegative

Here’s another excellent one (non-CS students can skip):
How many ways can a string be rearranged using only a
stack?  That is, suppose input strings are transformed into
output strings using only these two operations:

– Read the next input character and push it on the stack
– Pop the character on top of the stack and output it

For example, I can take the string ABCD and change it
into BACD  (push, push, pop, pop, push, pop, push, pop)
or CDBA (push, push, push, pop, push, pop, pop, pop)
but there’s no way I can make it into CABD or ADBC.
It turns out that of the n! possible permutations of an n-
character string, exactly Cn of them can be achieved using
only a stack.   (In the example, I can get to C4 = 14 of the
24 permutations of ABCD using only a stack.)   Why?


