
MATH  22
Lecture C:   9/9/2003

MORE  COUNTING

                       When angry, count ten
                                    before you speak;
                       If very angry, an hundred.

—Thomas Jefferson

                       When angry, count to four.
                       When very angry, swear.

—Mark Twain
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Administrivia
• No office hours 9/11;  office hours today
instead, by request
• Homework / projects due today  (homework
in folders, projects in a separate pile)
• Questions about homework, project?  Anyone
want to see solutions?
• Questions/review from last lecture?
• http://denenberg.com/LectureC.pdf
• Response to:  Post assignments in advance?
• Response to:  Supplemental problems
• Comment:  Projects are for exploration

Today:  More about combinations, the
Binomial Theorem & Pascal’s Triangle, other
counting problems.



Examples of Combinations
How many distinct bridge hands are there?
Answer:  C(52,13).  52 cards in a deck, choose any 13.
(Doesn’t work for poker!)

How many ways are there of choosing a baseball team
from 18 people?
Answer:  C(18,9).

How many ways are there of splitting 18 people into two
baseball teams?
WRONG ANSWER:  C(18,9).   Choose 9 people for one
of the teams; the other 9 form the second team.
Here’s the trouble:  At some point you select 1,2,3,...,9,
so players 1 through 9 are on one team and 10 through
18 are on the other.   But another selection consists of
players 10,11,...,18, which results in the same two teams!
See again Example 1.22 on p. 16, there done wrong.

The correct answer is  C(18,9) / 2,  since each way of
splitting people into two teams is produced by two of the
ways of choosing 9 out of the 18.   This is yet another
application of clumps:  There are C(18,9) teams, but
each way of splitting people into teams corresponds to a
clump of two teams.   The thing we want here is the
number of clumps, which we get by dividing by 2.



Yet Another Example
How many ways are there of splitting 18 people into two
baseball teams, the “Yankees” and the “Red Sox”?
Now the answer is C(18,9), since (presumably) putting
players 1 through 9 on the Yankees and 10 through 18 on
the Red Sox is different  from the other way around!

How many ways are there of choosing the three winners
of a horserace if there are ten horses running?
The answer is not  C(10,3), which is the number of ways
of picking three horses where order doesn’t matter.  But
in a horserace, order does matter;  A to win, B to show,
C to place is much different than C to win, A to show,
and B to place.  So we have to go back to permutations.
The correct answer is P(10,3).

Comment:  Generally, permutations are the tool of choice when
order is important (horserace, words) and combinations when
order is unimportant (poker hands, lottery tickets).  But you
must not blindly apply this rule!  Often it’s not so obvious
whether to use permutations or combinations, and sometimes
we need both.  You must understand the problem and the tools!



Combinatorial Identities
From the end of last lecture:

C(n,n)  =  1
(There’s only one way to choose all the
members of a set of n.)

C(n,0)  =  1
(There’s only one way to choose zero members
of a set of n.)

C(n,r)   =   C(n,n–r)
(To choose  r members from a set of n, you can
equally well choose n–r members to leave out.)

Comment:  It’s convenient (and intuitively
correct) to set   C(n,r) = 0   whenever   r < 0
or   r > n.



Another Identity
C(n+1,r)  =  C(n,r)  +  C(n,r–1)

Useless, unenlightening proof:
Massage    n!/r!(n–r)! + n!/(r–1)!(n-r+1)!
algebraically until it turns into  (n+1)!/r!(n+1–r)!

(But you should be sure you can do this; it’s good practice in
handling factorials.)

A proof that promotes understanding:
C(n+1,r)  is the number of ways of choosing
r items out of a set of n+1, order unimportant
and without repetitions.
Call one of the n+1 items X.  There are two
ways we can choose the r items:

Ignore X; pick r items from among the
other n items.  This can be done in C(n,r) ways.

Choose X plus r–1 of the other n items.
This can be done in C(n,r–1) ways.
These two methods don’t overlap, so we can
add the results together.  Done!



And Another
C(n,0)  +  C(n,1)  +  C(n,2)  + … + C(n,n)  =  2n

We prove this identity by showing that each side is the
number of subsets of a set of  n  elements  (are we sure we
know what this means?).

LHS:  The number of subsets of a set of size n is equal to
the number of subsets with size 0, plus the number of
subsets with size 1, plus the number of subsets with size 2,
and so forth, up to the number of subsets of size n.
But the number of subsets with size k is just the number of
ways of choosing k elements from a set of  n (order
unimportant, no repetitions), which is C(n,k).  So the LHS
above is the total number of subsets of a set of size  n.

RHS:  To make a subset of a set of size n,  we consider the
elements one after the other and answer the question “in or
out”?   We need to make n independent decisions, and for
each there are 2 possible choices;  each way of doing this
leads to a different subset.   By the Rule of Product, the
number of ways of doing it is 2n.

(This is an awesome proof technique: Show that two expressions
are equal by showing that they each count the same thing!)



The Binomial Theorem
As we (should) know,

(x+y)2  =  x2  + 2xy  +  y2

Let’s recall why.  We get this by “cross multiplying”
(x+y)(x+y), giving four terms:  xx, xy, yx, and yy.  Of
course xy and yx are the same (an x times a y) so they can
be combined into 2xy.   (What is a term?)

Now what about
(x+y)n = (x+y)(x+y)(x+y)…(x+y)

The answer is going to be the sum of cross-multiplying
all possible terms.   That is:  Pick one thing, either an x
or a y, from each pair.  Multiply these n things together;
the answer is xkyj for some k and j.   Repeat this
procedure for all possible ways of picking, and add all of
the results together!

Let’s look at one term xkyj.   Obviously  0≤j,k≤n  (are we
sure what this means?)  and  also  j+k = n.    So we might
as well write a term as xkyn-k.   Also, similar terms (those
with the same k) can be collected.  So the answer is
A0x0yn  +  A1x1yn-1  +  A2x2yn-2  +. . .+ An-1xn-1y1  + Anxny0

and all we need to do is calculate the coefficients Ak.
(Pause to understand, and to see the values of A0 and An.)



Binomial Thm, cont.
How many cross-multiplications yield xkyn-k for given k?

Answer:  Think of the n copies of (x+y) as n distinct
items.  Now choose k of those items to be the ones
donating y to the term.  The remaining n–k items donate
an x, and the result is xkyn-k.

How many ways are there to choose the k items to
donate y?  Obviously there are C(n,k) such ways:  Order
doesn’t matter, and each item can be chosen at most
once.  So the coefficient of xkyn-k is C(n,k).

We have proven the Binomial Theorem:

(x+y)n  =  C(n,0)x0yn  + C(n,1)x1yn-1  +  C(n,2)x2yn-2  +
+ ... +C(n,k) xkyn-k + ... +  C(n,n-1)xn-1y1  +  C(n,n)xny0

You should verify that (x+y)2 = x2+2xy+y2 is the special
case of this when n=2.



Three Comments
Comment 1:  Take the Binomial Theorem,
(x+y)n   =   C(n,0)x0yn   +  C(n,1)x1yn-1  + … +  C(n,n)xny0

and substitute x = y = 1.   The result is
2n   =  C(n,0)  +  C(n,1)  +  . . .  +  C(n,n).

Look familiar?

Comment 2:  Now substitute x = –1, y = 1.   Result:
0n  =  0  =  C(n,0) – C(n,1) + C(n,2) – C(n,3) + . . .

C(n,0)+C(n,2)+C(n,4)+...  =  C(n,1)+C(n,3)+C(n,5)+...
Can you prove this with a counting argument?
Hint:  If  n  is odd the argument is totally trivial.

Comment 3:  What if we’re interested in
(x + y + z)n

or more generally in
(x1 + x2 + x3 + . . . + xk)n

Same idea:  We get, via complete cross-multiplication,
terms of the form   xpyqzr   where   0 ≤ p,q,r ≤ n   and
p+q+r = n, and the only problem is to count the number
of terms for each triple of exponents.   The result is
called the Multinomial Theorem:  the coefficient of
xpyqzr   is  n!/p!q!r!    (full derivation is in the book).



Pascal’s Triangle
1

1  1
1  2  1

1  3  3  1
1  4  6  4  1

1  5  10 10  5  1
. . .

The rth  entry in the nth row of Pascal’s Triangle is C(n,r).
(The top row is the zeroth row, containing only C(0,0).)
Each entry is the sum of the two above it, according to

C(n,r)  =  C(n-1,r-1)  + C(n-1,r)
which we saw earlier in slightly different form.
Each row is a sequence of binomial coefficients, e.g.

(x+y)5  =  x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x+y)1  =  x + y
(x+y)0  =  1

Pascal’s Triangle has lots of pleasant properties, some of
which you will be exploring in a project (I think).



Combinations with repetition
How many ways are there to select r objects from a set
of n items, where order is unimportant but repetitions are
permitted?
Example:  How many ways can I pick a dozen bagels, if
the bagel shop makes twenty kinds?
If all the bagels have to be different, the answer is easy:
C(20,12).   But we’re not just choosing twelve items
from a set of twenty, because we can pick six egg bagels,
three plain, etc.

Note that here it makes sense to have r>n, which doesn’t
make sense when repetitions aren’t permitted.  That is,
C(n,r) is always 0 if n<r --- how can you choose 10
objects from a set of 5?  But with repetitions it can be
done:  I can buy 10 bagels from a shop that makes 5
kinds of bagels!

(Order is still unimportant here.  I can pick two plain
then two egg, or instead a plain, then an egg, then a
plain, then an egg.  All that matters is what bagels are in
my bag at the end!)

How shall we proceed?



Combs w/reps, cont.
Method I:   Make a little “picture” that
represents a choice.  A picture consists of:

– Zero to r circles, denoting bagels of the first
flavor, then

– A comma to separate flavor 1 from flavor 2, then
– Zero to r circles denoting bagels of flavor 2, then
– A comma to separate flavor 2 from flavor 3,

. . . and so forth up, up to . . .
– Zero to r circles denoting bagels of flavor n.

Here are some pictures for n=5 and r = 10 (that
is, picking ten bagels from five flavors):

 O O O , O O , O , O O O , O
(3 of the first flavor, 2 of the second, . . ., 1 of the fifth)

O O ,  , O O O , O O O O O , O
(2 of the first flavor, none of the second, etc.)

,  ,  , O O O O O O O O O O ,
(all ten of the fourth flavor, obviously garlic)

Now we’re just going to count the number of pictures!



Method I, cont.
Here are the critical points about the pictures:
• Each picture has exactly r circles (10 in the example);
this represents the number of bagels to be chosen.
• Each picture has exactly n–1 commas (4 in the
example);  this is one less than the number of flavors.
It’s one less because the commas go between flavors.
We’ll see in a second why we want this.
• Each way of choosing the bagels leads to a single,
unique picture.  (Pretty obvious.)
• Any way at all of slapping down r circles and n–1
commas corresponds to exactly one way of choosing
bagels!  (Not necessarily so obvious, but true.  Wouldn’t
be true if we put commas on the outside.)
Conclusion:  If we count the number of ways of writing
down r circles and n–1 commas, we have counted the
number of ways of picking r bagels from n flavors!
And how many such ways are there?  Each picture has
r+n–1  marks where each mark is either a circle or a
comma.  The number of pictures is just the number of
ways of picking which r of these marks are the circles!
So the answer, the number of ways of picking r items
from a field of n with repetitions, is C(n+r–1,r).



C with R, Method II
A completely different way of solving the same problem:
Label the flavors as numbers from 1 to n, that is, 1
represents the first flavor, 2 the second, and so forth.
Represent a choice of r bagels as an ordered sequence of
numbers;  each number is a bagel type (from 1 to n) and
the sequence has length r.  So, for example,

<3, 1, 4, 2, 5, 5, 2, 1, 1, 2>
represents choosing a bagel of type 3, then one of type 1,
then one of type 4, etc.
Problem: This representation incorrectly makes
significant the order in which we choose bagels!   For
example,

<5, 2, 1, 3, 4, 5, 1, 2, 2, 1>
is a different sequence, but encodes the same choice of
bagels.   We can repair this by always representing bagel
choices as sorted sequences.  That is, we wouldn’t use
either sequence above, but rather

<1, 1, 1, 2, 2, 2, 3, 4, 5, 5>
to represent this choice of bagels.  The question now is to
count the number of sorted sequences of length r, each
entry of which is an integer from 1 to n.



Method II, cont.
Here’s the trick:  Given any sequence, let’s make
something which we’ll call the fixed sequence (“fixed” in
the sense of “repaired”.)   We “fix” a sequence by adding

<0,1,2,3,4, . . . ,  r–1>
to it.   Fixing the example from the previous slide gives

<1, 2, 3, 5, 6, 7, 9, 11, 13, 14>
Two things are true about any fixed sequence:

– Its elements are all between 1 and n+r–1.
– It’s always increasing (since it’s the sum of an

increasing and a nondecreasing sequence).
We know that any choice of bagels corresponds to a
unique fixed sequence.  Now we assert that each fixed
sequence corresponds to a unique choice of bagels!
How do we know this?  We can unfix any fixed sequence
by subtracting <0,1,…,r–1> from it (this can never go
negative) and get back to some choice of bagels.
So we can solve the original problem by counting the
fixed sequences.  And a fixed sequence is just any choice
of n numbers between 1 and n+r–1, order unimportant
(since we sort it anyway) and without repetitions (since
fixed sequences never have duplicates).
And, of course, this is just C(n+r–1, r), as it should be.



Example:  Backgammon
We once said that there are 36 ways that two dice can
fall, but that a backgammon player doesn’t care about 36
different possibilities (because it doesn’t matter whether
the dice fall 3&5 or 5&3, for example).
So how many ways can two dice fall in backgammon?

To get an answer, we rephrase the question like this:  We
have n=6 objects (namely, the possible ways a die can
fall) and we want to select r=2 things from this set
(namely, the value on each die) with repetitions
permitted (because the dice can have the same value).

By our result, the answer is
C(6+2–1, 2)  =  C(7,2)  =  21.

More generally, in how many different ways can k
identical dice fall?   Answer:  Now we’re asking to
choose r=k things from a field of n=6, with repetitions
allowed but with order unimportant, so the answer is

 C(6+k–1, k)



A Variation
How many ways are there of buying r bagels from a
bakery that offers n kinds of bagels, if we insist on
buying at least one of each kind?

This is pretty simple.  Start by picking one bagel of each
kind—there’s only one way to do this, and you have to
do it anyway.   Now we need to count the number of
ways of picking r–n bagels from a set of n kinds of
bagels, order unimportant and repetitions permitted.  By
previous work, the answer is C(r–1, r–n).

Notice that when  n=r  or  n=1 the answer is always 1,
and when  r<n  the answer is always 0.   Is this right?

Generalization:   How many ways are there of buying r
bagels from a bakery that offers n kinds of bagels, if we
insist on buying at least q bagels of each kind?   Clearly
the answer is 0 when  r<qn.
You should be able to finish this one off yourself.   (And
if it were up to me, you’d have to.)



Summary
How many ways are there to select r things
from a set of n distinct items, . . .
• with order important, and repetitions permitted?
Answer:  nr

• with order important, and no repetitions permitted?
Answer:  P(n,r)
• with order unimportant, and no repetitions permitted?
Answer:  C(n,r)
• with order unimportant, and repetitions permitted?
Answer:  C(n+r–1, r)
• with order unimportant, repetitions permitted, and at
least 1 of each of the n selected?
Answer:  C(r–1, r–n)

If the n items are not distinct, but there are m1 of one
kind, m2 of a second kind, . . . , mk of the kth kind, where
the sum of the mk is n, then the number of ways of
permuting all n items is n! / m1!m2!...mk!  (and we don’t
know how to count anything else).    [MISSISSIPPI]

NB:  “repetitions permitted”  is also meant when we say
“with replacement”;  the idea is that you choose a thing,
but then put that thing back into the pot so that it can be
chosen again.



Urn and Ball Problems
Urn and ball problems have been the bane of generations
of students of combinatorics.   We’re looking at them
here just as an exercise in distinguishability.

How many ways are there of putting r balls into n urns?
The answer depends on whether you can tell the balls
and the urns apart!

Suppose that both balls and urns are distinguishable.  We
simply need to choose one of the n urns for each ball,
i.e., a choice of n, then another choice of n, for each of
the r balls.  By rule of product, the answer is  nr.
(What happens if we permit at most one ball per bin?)

Now suppose that the urns are distinguishable, but the
balls are identical.   This is the same as choosing r things
from a set of n, with repetitions permitted.  (We must
choose a set of  r  urns for the balls to go into.)  So the
answer is C(n+r–1, n).
(Again, what’s the answer with at most one ball per bin?)

Finally, if the urns are indistinguishable, we don’t yet
have the techniques to solve the problem whether or not
the balls are distinguishable!   Wait and see.



Application:
Solutions of Equations

How many solutions are there to the equation
x1 + x2 + x3  =  8

where each of the xi is a nonnegative integer?
Write a solution as (x1, x2, x3); some examples of
solutions are  (4, 2, 2),   (2, 2, 4),   (3, 1, 4),   (0, 0, 8), ...

Here’s how to cope with this problem:   We’re trying to
count the number of ways to distribute 8 among the xi.
The 8 “units” to be distributed are indistinguishable
balls, and each of the  xi  is an urn which can “contain”
balls.   The urns are distinguishable because the  xi  are
distinguishable, e.g., the first two example solutions
given above are different!  So the answer is C(8+3–1, 8).

What if the xi must be positive (not nonnegative)?  The
same, only we now require at least one ball per urn, that
is, each xi must be at least 1.   The answer is  C(7, 5).

Finally, what if it’s  x1 + x2 + x3  ≤  8  (instead of = 8)?
We handle this by introducing a “dummy” variable x4
and counting solutions of   x1 + x2 + x3 + x4  = 8;  do you
see why this gives the same answer?



Application:  Runs
Suppose we have a string of  1s  and  0s:

1  1  1  0  0  0  0  1  0  0  0  0  0  1  1
A  run  in such a sequence is a continuous string of the
same number.   The example sequence above has exactly
five runs:  First a run of three 1s, then a run of four 0s,
then a run of a single 1, etc.

How many ways are there to arrange six 1s and nine 0s
such that exactly five runs result?

There are two ways to make five runs:  Either we start
with a run of 1s as above (in which case we must also
end with 1s) or we start (and end) with 0s.

Start with the first case:  Let x1, x2, and x3 be the number
of 1s in the first, second, and third run.   Each xi must be
positive and we must have x1+x2+x3=6.  There are  C(5,3)
possible solutions to this equation, that is, C(5,3) ways of
making three runs from six 1s.  Similarly, using y1+y2=9,
there are C(8,7) ways of arranging nine 0s into two runs.

Multiplying, there are C(5,3)C(8,7) ways of making five
runs starting with 1s.   You do case 2, that is, count the
number of ways of making five runs starting with 0s.
What then should you do with these two numbers?


