
MATH  22
Lecture B:   9/4/2003

COUNTING

How do I love thee?
Let me count the ways.

—Elizabeth Barrett Browning,
Sonnets from the Portuguese, XLIII

I counted two and seventy stenches,
All well-defined, and several stinks.

—Samuel Taylor Coleridge, Cologne

Tros Tyriusque mihi nullo discrimine
agetur.

—Virgil, Aeneid I:574
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Administrivia
• Roll call
• Academic Resource Center  (Dowling Hall)
• Homework, in folders, is due Tuesday 9/9
• http://denenberg.com/LectureB.pdf
• Questions about Lecture A, first problem set,

first project?
• Office hours after class today in room 214, or

by appointment anytime.  (Don’t believe
anything about office hours Tuesday.)

  Today:  Counting, rules of sum & product,
examples, factorials, permutations,
permutations with repetitions, combinations.

I shall recognize no difference
between the Tyrian and the Trojan.



Counting
The area of discrete math called combinatorics
often asks the question “How many different
ways can something happen?”

– How many different poker hands are there?
– How many different ways can two dice land?
– How many different ways are there to pick four

baseball teams given 36 people?
– How many different ways are there to fully

parenthesize the expression a*b+c*d-e+f*g?
– How many distinct bytes of memory can be

addressed by a 32-bit word?
(For example, this question constantly arises in
calculating probabilities, as we’ll see later.)
Counting, also known as enumeration, can be
one of the hardest problems in mathematics.  In
this course we’ll only get the slightest taste of
its complexity.
The absolutely crucial word in all of these
questions is the word different (or distinct).



What does different mean?
Problem:  How many different ways are there
to seat five people, A, B, C, D, and E, around a
circular table (whose seats don’t move)?
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Are these three arrangements
distinct?  Or all the same?  Or
maybe the upper two are the
same but the third is different?
What if it were keys on a ring
rather than people around a
table?   The answer to the
problem depends on what you
want “different” to mean!

(As an example of how tricky this can be, consider
Example 1.22 on p. 16, which Grimaldi gets wrong.)



Rule of Sum
Suppose there are m ways to do something, and
there are n ways to do something different, but
you only want to do one thing or the other.
Then there are m+n things you can do.
Example:  If a store has 12 records by the Beatles, and
15 records by the Rolling Stones, and you can buy only
one record, then you have a choice of 27 records.

Frankly, I find this “rule” almost too silly to
require explicit formulation.  You mostly just
apply it instinctively.  But consider:
Example:  If one store has 12 records by the Beatles, and
another store has 15 records by the Beatles, and you can
buy only one record, then you may or may not have a
choice of 27 different records.  It may be as few as 15!

There is a beautiful generalization of this rule
called the Principle of Inclusion and Exclusion
that covers this and much more complex cases.



Rule of Product
Suppose there are m ways to do a first thing,
and n ways to do a second thing.  Then there
are mn ways to do both things (the first
followed by the second, in order).
Example:  If a store has 12 records by the Beatles, and
15 records by the Rolling Stones, and you want one of
each, then there are (12)(15) ways you can spend your $.

This rule is used in zillions of counting
problems.  (Again, it’s pretty instinctive.)
Before giving examples, let’s generalize:
Suppose there are m1 ways to do a first thing,
m2 ways to do a second thing, m3 ways to do a
third thing, . . ., and mk ways to do a kth thing.
Then there are m1m2m3…mk ways to do the k
things successively, one after another.
Example:  If a store has 12 records by the Beatles, 15 by
the Rolling Stones, and 7 by Rudy Vallee, and you want
one of each, then there are (12)(15)(7) ways you can buy
three records.



Less Trivial Examples
Example:  How many three-letter words are
possible?
We must pick the first letter, then the second,
then the third.  There are 26 choices in each
case.  So there are 263 possible three-letter
words.  Wow.  Qqq.  Zxy.

Example:  How many four-digit numbers are
there?
We must pick the first digit, then the second,
the third, the fourth.  For the first digit we have
nine choices (it can’t be 0), for the other three
we have ten choices each.  So there are
(9)(10)(10)(10) = 9000 four-digit numbers.

Example:  A bit can be 0 or 1.  How many 32-
bit words are possible?
We have to pick the first bit (2 choices), then
the second (2 choices), etc. for 32 bits.  So
there are 232 possibilities.  (Be sure you
understand why it’s not 322!!)



An Even Less Trivial Example
A Nebraska license plate consists either of 3
letters followed by 3 digits, or 4 letters followed
by 2 digits, e.g. ABC838, AAA111, ABCD12,
XXXX33 (but not AB1212 or 123ABC).  How
many Cornhusker cars can there be?
We break this problem into two cases.  First
consider the 3-letter plates.  There are

(26)(26)(26)(10)(10)(10)
of these.  Similarly, there are

(26)(26)(26)(26)(10)(10)
plates with 4 letters and 2 digits.  Since each
plate is one or the other and not both, the total
number of plates is the sum of these two values
(which I’m far too lazy to compute).
Note how we’ve used both the Rule of Sum and
the Rule of Product here.
It’s critical that our two cases are separate: no
plate appears in both cases!



A Bogus Example
An Illinois license plate consists of six digits,
where either each digit is 6 or greater, or each
digit is odd.  For example, 886796 or 987899
or 313793 or 991135, but not 123456.  How
many Hoosier cars can there be?
Again, break the problem into two cases.  First
consider the plates with digits 6 or greater;
there are four such digits and hence 46 plates.
Next consider the plates with odd digits; there
are 5 odd digits and hence 56 such plates.  So
far so good.
But it’s wrong to say that the total number of
plates is 46+56, because the two cases aren’t
separate as required by the Rule of Sum.
License plate 799779 falls into both cases (as
do many others) and therefore has been
counted twice!  We say that we’ve made a
mistake of double counting.  The correct
answer is smaller than 46+56.  (See Venn.)



Permutations
A very important application of the Rule of
Product happens when we’re selecting items
from a fixed set and can use each only once.
How many three-letter words are possible if no
letter may appear more than once?
The answer is not (26)(26)(26) because we
can’t reuse letters:  AAA is not permitted.  The
answer is that we can pick the first letter in 26
ways, the second letter in 25 ways (since the
first letter is no longer valid), and the third
letter in 24 ways.  The answer is (26)(25)(24).
How many ten-digit numbers are there in
which no digit is repeated?
The first digit can be any of 10, the second any
of 9, the third any of 8, etc.  The answer is

(10)(9)(8)(7)…(2)(1).
[How many eleven-digit numbers are there in
which no digit is repeated?]



Factorials
(This slide is a digression, purely about notation.)
We need a handy way to represent products of the form

 (n)(n-1)(n-2)…(3)(2) (1)
We write n! and say “n factorial” (or “n bang”) to denote
this product.  Examples:

5! = (5)(4)(3)(2)(1) = 120
2! = (2)(1) = 2
1! = 1

Useful facts:
n! / k!   =   (n)(n-1)(n-2)…(k+1)           [why?]
n!  =  n(n-1)!                                          [why?]

This last fact helps us to settle a puzzling case:  What is
zero factorial (an important quantity)?  We must have

1!  = 1(0!)
which makes it clear that 0! must equal 1.  (This is also
true because a product of zero factors must equal 1, just
as a sum of zero terms must equal 0.  Don’t worry if you
don’t understand that last sentence.)
And what about –1!?   Well, we have  0!  =  0(– 1!)
which means that – 1!  = 1/0, that is, – 1! doesn’t exist.
And neither do – 2!, – 3!, – 4!, etc.  But 1.5! does exist
(as does –1.5!), though that’s beyond the scope of this
course.



Back to Permutations
In general, suppose we have n different items.
How many ways there are to arrange r of these
items in order without reusing any?  The
answer is called the number of permutations of
n things taken r at a time, written P(n,r) in this
class but nPr in days of yore.
The answer is that the first item can be any of
the n, the second item can be any of the n-1
remaining, the third item can be any of the n-2
remaining, etc., and the rth item can be any of
the (n-r+1) remaining.  So the answer is
P(n,r)  =  (n)(n-1)(n-2)…(n-r+1)  =  n! / (n-r)!

In the three-letter word problem we have n=26
and r=3, so the answer is P(26,3) = 26! / 23!.
(This is the answer, by the way.  Not 15600.)
In the ten-digit number problem we have
n=r=10,  giving  P(10,10)  =  10! / 0!  =  10!.
It’s easy to see that P(n,n) = n! for all n.



Permutations with Repetitions

A twist:  What happens when the objects to be
permuted aren’t different?

How many permutations are there of (all) the
four letters A, B, C, D?
Answer:  P(4,4) = 4! = 24.

But how many permutations are there of the
four letters A, A, A, A?
Answer:  Only one, namely AAAA.  We can
choose a first A then a second, etc., but they’re
all the same A!

How many permutations are there of the four
letters A, A, B, B?   Or of the letters in the
word MISSISSIPPI (the classic example)?

How do we handle this problem in general?



Perms w/ Reps, cont.
Here’s what we do.  Suppose we want to find
all the permutations of the letters A, A, B, C.
We start by relabelling the two As so that they
are distinct.  The letters are now A1, A2, B, C.

We know there are P(4,4) = 4! permutations of
these four “letters”.  So far so good.

Key point:  These permutations come in pairs
whose only difference is the labelling on the
two As.  For example, A1BCA2 and A2BCA1
form a pair, as do BA1A2C  and  BA2A1C.
When we erase the labels on the As, the two
elements of the pairs look exactly alike!  So the
real question we need to answer is:  How many
pairs are there?

Well, each permutation belongs to exactly one
pair, and the pairs are all distinct, so there are
4!/2 pairs.  And this is the answer.



Forging ahead
Next step:  How many permutations are there
of the letters A,A,A,B,C?   Again, label the As
so they’re distinct, giving A1,A2,A3,B,C.  We
know there are P(5,5)=5! permutations of these
five distinct letters.
Key point:  These permutations come in
clumps of 6 whose only difference is the
labelling on the As.  One clump, for example,
is A1BA2A3C, A1BA3A2C, A2BA1A3C,
A2BA3A1C, A3BA1A2C, A3BA2A1C.  Again,
everything in a clump is the same if you erase
the labels, so all we need is the number of
clumps, which is 5! / 6.
[Where did “6” come from in this example?
It’s the number of ways of permuting the three
As;  each clump contains every possible way of
permuting A1,A2,A3, and there are P(3,3)=3!=6
such ways.]



Forg1ing2 a1hea2d
What if more than one letter is duplicated?  How many
different permutations are there of the letters
A,A,A,B,B,B,B,C?  The answer is that the clumps now
have size 3!4! (there are 3! ways of permuting the As
and 4! ways of permuting the Bs, and a member of a
clump has one of each).  If we keep the As and Bs
distinct there are 8! permutations, so there must be
8!/4!3! clumps.  And as before, the number of clumps is
the answer.
The book gives the general formula.  You should now be
able to tell how many ways there are of rearranging the
letters of MISSISSIPPI:   it’s  11! / (4!)(4!)(2!).

[Comment:  In all the perms-with-dups examples we’ve
asked for the number of reorderings of all the letters.
But how many ways are there to make a five-letter word
from the letters in MISSISSIPPI?  If you try to work this
out you’ll come across a problem:  The clumps don’t
have the same size, so you can’t just divide!  Solving this
seemingly-only-slightly-more-difficult problem is
beyond the scope of this course.]



Ignoring Order
All the work we’ve done so far has been with
arrangements, that is, ordered selections.  (For
example, CAT and ACT are different three-
letter words.  We choose the first letter, then
the second, then the third.   If we weren’t doing
it this way, we couldn’t apply the Rule of
Product.)
But now:  What if order doesn’t matter?
How many different ways are there of picking
a committee of three from a group of 26
people?
Suppose we label the people A, B, C, . . ., Z.
The answer is not P(26,3) = (26)(25)(24)
because the order isn’t important;  a committee
with C, A, and T is the same as a committee
with A, C, and T.  The order is irrelevant, and
the Rule of Product doesn’t apply directly.

What to do?



Clumps Again
Clumps to the rescue!  Suppose we consider all
the permutations of the 26 letters taken 3 at a
time.  These fall into clumps where the letters
are the same but the order is different.  (For
example, one clump consists of ACT, ATC,
CAT, CTA, TCA, and TAC.)
Luckily, each clump has the same size;  in this
example, each clump has size 6.  (Why 6?
Because there are 6 ways of permuting the
three letters in each clump.)
As before, the answer we want is just the
number of clumps;  in this case (26)(25)(24)/6.

In general, if we want the number of ways of
choosing r items out of a set of n distinct items,
we consider all P(n,r) ordered arrangements of
the n items taken r at a time, and we note that
they fall into clumps of size P(r,r) = r!.  So the
answer is  P(n,r)/P(r,r)  =  P(n,r)/r! .



Combinations
This number, the number of ways of selecting r
objects from n distinct objects where order
doesn’t matter, is called the number of
combinations of n things taken r at a time.  It
can be written C(n,r) but is most commonly
written in a way I can’t manage here.  It’s quite
typically pronounced “n choose r”.
To recap, we have

C(n,r)  =  P(n,r) / P(r,r)   =  n! / (n-r)!r!

Example:  In the original Mass Megabucks
lottery, a ticket was 6 of the numbers
1,2,3,…,36, with order unimportant.  How
many tickets are there?
Answer:   C(36,6)  =  36! / 6! 30!

We’re going to see a lot of these numbers;
they’re more important than permutations.
Many more examples next time.


