
Online Median Finding

Larry Denenberg

(draft)



Abstract

The Online Median problem requires us to add elements to a set and at any
time to produce the median of the elements added so far. A straightforward
solution using two heaps permits adding elements in O(logN) comparisons
with the current median always available. We show how to reduce the
expected number of comparisons for adding an element to 2 + ε+ o(1) while
preserving the worst-case bound, or to 2 + o(1) with slightly higher worst-
case bound.

c© 2010 Larry Denenberg



Who the hell cares how much time it takes?
If it’s too slow for you, buy a faster machine.

—Don Knuth, Full Retraction, §3.16

1 Introduction

The median of a set of totally-ordered elements can be found in linear time;
the best algorithm to date requires 2.942N + o(N) element comparisons to
find the median of N elements[BF, DZ]. We are interested in the online
problem, where elements arrive one by one and we might be asked at any
time for the median of the elements added so far. We require two operations:

• AddElement(e), add a new element e to the current set, and

• CurrentMedian(), return the median of the current set of elements.

A straightforward solution uses two priority queues, one with operations
Insert and DeleteMin, and one with “inverted” comparisons, i.e., with
DeleteMax in place of DeleteMin. The first queue stores elements greater
than the current median; the second stores elements smaller than the current
median. We keep the queues balanced: At all times, either they have the
same number of elements, or one has one more element than the other. A
new element is placed in the appropriate queue, and if that queue is then too
large we rebalance by transferring its extreme element to the other queue.

When the queues have different sizes, the current median is the extreme
element of the larger. Otherwise, we take the extreme element of either
queue as the median. Call this algorithm the basic method (Figure 1).

With priority queues implemented by heaps as in [LD], AddElement uses
O(logN) comparisons in both worst and expected cases. In this note we
employ a couple of coding tricks to obtain surprising improvements in the
expected time for AddElement under the assumption of random inputs.

As usual, our complexity measure is number of element comparisons.
Since number of comparisons serves as a proxy for computation time, we
eschew techniques where these two are not linearly related. For example,
heap Insert can be performed in O(log logN) comparisons by using binary
search to find the correct location of the new element on the path from the
new leaf to the root, then swapping the new element up to that location
without element comparisons. But the total number of operations is not
O(log logN), so we will not use this trick.

1



class OnlineMedianFinder
{

public int CurrentMedian; // the current median, always available

MinHeap BigElements = new MinHeap(); // elements > CurrentMedian
MaxHeap SmallElements = new MaxHeap(); // elements < CurrentMedian
int balance = 0; // tells which heap (if any) has an extra element

public void AddElement(int newval) {

switch (balance) {

case 0: // the two heaps have the same number of elements
if (newval < CurrentMedian) { // "<=" is just as good as "<"
SmallElements.Insert(newval);
CurrentMedian = SmallElements.Max();
balance = -1;

} else {
BigElements.Insert(newval);
CurrentMedian = BigElements.Min();
balance = +1;

}
return;

case +1: // BigElements has an extra element
if (newval <= CurrentMedian) { // "<=" is better than "<"
// this Insert brings us back into balance
SmallElements.Insert(newval);

} else {
BigElements.Insert(newval);
// BigElements now has two extra elements; must rebalance
SmallElements.Insert(BigElements.DeleteMin());

}
balance = 0; // we’re always balanced at this point
return; // note that CurrentMedian doesn’t change

case -1: // SmallElements has an extra element
// [the code is parallel to the +1 case]

}
}

}

Figure 1: The basic method, implemented in Java.

2



We (somewhat unrealistically) ignore storage requirements and assume
that all heaps grow magically as required. A different approach to online
median finding, where very little space is used but which produces only an
approximation to the median, has been described by several researchers; see
[CH] for more information.

For simplicity, we generally use terminology appropriate for a MinHeap,
the heap containing larger elements and implementing DeleteMin. For ex-
ample, we say that “rebalance requires a single DeleteMin” even though
some rebalances use DeleteMax instead.

2 Analysis of the Basic Method

At each call on AddElement, either the two heaps have equal size or one of
them has one more element than the other; these two states alternate. So
half the calls on AddElement require only a single Insert.

When the heap sizes are not equal, the newly-arrived element either
belongs in the heap with fewer elements and we regain balance with a single
Insert, or it belongs in the heap with more elements and we rebalance with
two Inserts plus a DeleteMin. These two cases have equal probability
when inputs are random. In summary, with probability 1/4 we perform the
three-operation rebalance, and with probability 3/4 we do a single Insert.

To Insert a random element into a heap is usually cheap, since the
new element rarely belongs near the top. In fact, the expected number of
comparisons for Insert is constant, independent of heap size. We can see
this with a little handwaving: Half the heap’s elements, the larger ones,
are childless elements in the bottom layers, so in half of all Inserts the
new element comes to rest after a single comparison. Two comparisons are
required 1/4 of the time, and so forth. Summing, we find that the expected
number of comparisons for Insert is 2. This estimate is slightly too low
because the lowest layers of the heap needn’t contain the largest elements.

There are several sharper estimates of the expected number of compar-
isons for heap Insert with various randomness assumptions[BS, PS]. Our
problem seems different, no doubt because of our specific pattern of oper-
ations and possibly because of the truncated distribution: A new element
smaller than the heap’s current minimum almost certainly will go into the
other heap! We sidestep this question by simply defining γ as the expected
number of comparisons for heap Insert of a random element during basic
online median finding, recognizing that this value is somewhat ill-defined
and may not exist. Experimentation suggests that γ is no more than 2.06.

3



DeleteMin, in contrast, is expensive. As we swap an element downwards
we need two comparisons at each level to find the smaller child of the current
node. About half the heap is at the bottom, so a random element travels
nearly all the way down. But the traveling element is not random; it was
taken from the bottom level and is therefore even more likely (though not
certain) to sink to the bottom. The expected number of comparisons is thus
close to the worst-case value, 2 lg(N/2). (Here and hereafter N is the number
of calls so far to AddElement so that each heap contains N/2 elements.)

Finally, the last Insert during rebalance is atypically expensive. The
element transferred from one heap to the other is an extreme element of both
heaps, and when inserted in the new heap it travels all the way to the root
with lg(N/2) comparisons (unless there are duplicate minimal elements).

So rebalance uses roughly 3 lg(N/2) + γ expected comparisons, making
the expected cost of AddElement about (3/4) lgN + γ + 1/4 comparisons,
including the one used to select which heap should contain the new element.

We get a small improvement by noting that we never use DeleteMin
without an immediately preceding Insert into the same heap. We do well
to combine these two: Replace the root with the new element and bubble
that element down as far as it goes, returning the original root element as
the result. Call this operation DeleteMinThenInsert. (The basic algorithm
actually does DeleteMin after, not before, the Insert, but performing the
DeleteMin first is slightly cheaper and doesn’t affect the result since the new
element to be inserted can be no smaller than the current heap minimum.)

With DeleteMinThenInsert we save an Insert on each rebalance. Fur-
thermore, DeleteMinThenInsert is even cheaper than DeleteMin because
now the element bubbling down from the root is random, and therefore more
often comes to rest before reaching the bottom. We ignore this savings and
continue to count DeleteMinThenInsert as 2 lg(N/2) comparisons. Hence
the savings in the expected cost of AddElement is just γ/4.

We’ve already mentioned that the second (and now only) Insert during
rebalance is especially costly since the new element is no larger than the
heap minimum. Call this operation InsertMin, or InsertMax for a MaxHeap.
In the next section we provide a special implementation of this operation.
(InsertMin can in fact be implemented with zero comparisons by blindly
swapping the new element to the root of the heap, but we’ve promised not
to cheat in this way.)

In summary, we change the rebalancing case of the algorithm from

BigElements.Insert(newval);
SmallElements.Insert(BigElements.DeleteMin());

4



to

SmallElements.InsertMax(
BigElements.DeleteMinThenInsert(newval));

with corresponding change in the parallel case.

3 Burrows

To make further progress we add to our heaps an auxiliary store, called
the burrow, where elements can reside. The resulting data structure, the
burrowed heap, supports the same operations as a standard heap, so we
need no changes to the code in Figure 1. The burrow consists of a limited
number of locations, each of which either is occupied by an element or is
empty.

The elements in the burrow are the extreme elements of the burrowed
heap, that is, the smallest elements of a MinHeap or the largest of a MaxHeap.
The burrow serves as a buffer that reduces the expected frequency of the
expensive heap operations by providing quick access to these extreme ele-
ments. (The burrow is so named because it lies “under” the root of the
heap, though it would be drawn above the root.)

To start, we organize the burrow as a stack, storing it in an array B of
size k. (We invariably use k to denote the total number of available locations
in the burrow.) If the burrow is nonempty, the bottom of the stack, location
B[0], contains the element just smaller than the root of the heap. The top
of the stack contains the smallest element of the entire burrowed heap.

The heap operations are now implemented like this:

• Insert(e): Insert e into the heap. If e rises all the way to the root,
and the burrow is nonempty, compare e to the bottom element of the
burrow. If e is smaller, swap these two and compare e with the next
element up the burrow. Continue swapping upward until e reaches
either a smaller element or the top of the burrow. The number of
elements in the burrow is unchanged.

• InsertMin(e): If the burrow is not full, push e onto the top of the
burrow; the burrow now has one additional element. Otherwise, per-
form Insert(e) as above; e rises to the top of the burrow (unless there
are duplicate minimal elements) and the burrow remains full.

• DeleteMinThenInsert(e): If the burrow is empty, perform standard
DeleteMinThenInsert(e) on the heap and the burrow remains empty.

5



Otherwise, remove the topmost element of the burrow and return it
after doing Insert(e) as above; in this case the number of occupied
locations in the burrow is reduced by one.

We can do better with a slightly more general burrow structure. Let us
also permit removing elements from the bottom of the burrow, making it an
input-restricted deque. We can continue to store the burrow in an array of
size k; the array becomes a circular buffer storing the burrow. Two cases of
the heap operations now become less costly:

• If the burrow is full during InsertMin(e), we remove the bottom ele-
ment of the burrow and insert it into the heap; it rises to the root of
the heap. Now there is a free location in the burrow and we can push
e onto the top of the burrow.

• During Insert(e), if e rises to the top of the heap, we compare e to the
element in the middle of the burrow. If e is greater than that element,
we proceed as before by comparing e to the bottom element of the
burrow and swapping upward as far as possible. But if e is less than
that element—and hence belongs in the upper half of the burrow—
we remove e from the root of the heap, replacing it with the bottom
element of the burrow. We can now push e onto the top of the burrow
(there is now at least one free location) and then swap it downward
as far as possible. As before, the number of occupied locations in
the burrow is unchanged. With this procedure we compare the new
element to at most half the elements in the burrow.

To compute the expected cost of AddElement with burrowed heaps, we
must first understand how the burrows fill and empty. Since Insert does
not change the number of occupied locations in the burrow, that number
changes only at a rebalance. At that point, the number of occupied locations
in one burrow increases by one unless that burrow is already full, and the
number of occupied locations in the other burrow decreases by one unless
that burrow is empty. Let m denote the total number of occupied locations
in both burrows. m is initially 0 and increases only when one burrow is
empty and the other is not full, i.e., contains fewer than k elements. At
such a point, m is less than k. Thus m cannot increase unless its value is
less than k, which implies that m never exceeds k. Similarly, the only time
that m can decrease is when one burrow is contains k elements and the other
is nonempty. But then m > k and this is impossible.

We conclude that the total number of elements in the two burrows starts
at zero, eventually increases to k (assuming random inputs), and remains k

6



thereafter. That is, at any point after the initial “burrow filling” period, one
burrow has j elements and the other has k− j elements for some j, and the
only possible change is that a rebalance increases or decreases j. (Indeed,
we could store both burrows in a single array of size k.) We are interested
in the expected cost of AddElement only once the total number of elements
in the burrows has become k permanently.

The presence of the burrow does not change the frequency of rebalance:
It is still the case that, on average, a quarter of the calls on AddElement
require a rebalance, and those rebalances are equally likely to move an ele-
ment from the MinHeap to the MaxHeap as the other way around. Analysis
of the expected running time depends on the following:

Fact. With random inputs and k elements in the two burrows combined,
the burrows are at any time equally likely to be in any of the k + 1 possible
configurations.

Proof. Think of the states of the burrows as states of a Markov model, and
for j = 0, 1, 2, . . . , k let pj be the probability that the burrow of the MinHeap
contains j elements and thus that the burrow of the MaxHeap contains k− j
elements. Except at j = 0 and j = k we have pj = (1/2)(pj−1 + pj+1) since
elements move from one burrowed heap to the other with equal probability.
That is, the value of each pj is the average of the adjacent values. This
harmonic condition implies that pj , as a function of j, has no local maxima
or minima and must be monotonic nonincreasing or nondecreasing. By
symmetry, pj must be constant except perhaps at the endpoints. Then
since p0 = 1/2(p0 + p1) we have p0 = p1 and similarly pk−1 = pk. Hence the
pj are all equal and each equals 1/(k + 1).

We next bound the expected cost of an Insert into a burrowed heap
with N/2 elements including j elements in the burrow. With probability
1− 2j/N the newly-inserted element belongs in the heap as usual, and the
expected cost of the insertion is just γ. Otherwise, we require lg(N/2 − j)
comparisons to find the top of the heap, and then search on average j/4
elements in the burrow. So the total expected cost in this case is

(1− 2j/N)γ + (2j/N)(lg(N/2− j) + j/4)
< γ + (2j/N) lgN + j2/2N.

When the k+1 possibilities for j are equally likely, we find that the expected
cost of Insert is less than

γ + (k/N)((2k + 1)/12 + lgN).

7



Now we can write down the expected cost of the N th invocation of
AddElement with the assumption that inputs are random and the total
number of elements in the burrow has already risen to k. As before, in
half the cases the heaps are already balanced and the cost is that of a single
Insert. In half of the remaining cases the heaps are unbalanced, but the
new element is such that only a single Insert is necessary.

In the remaining cases we rebalance. With probability (k−1)/(k+1) the
burrows are neither empty nor full, so the DeleteMinThenInsert becomes
an Insert and the InsertMin is free. Even in the cases where one heap is
empty and the other full, the probability is 1/2 that the rebalance will be
in the favorable direction, so again only a single Insert is required.

So the expensive case of AddElement happens with probability 1/4(k+1).
Here the expected cost is that of a DeleteMinThenInsert on a standard
heap, 2 lg(N/2) < 2 lgN , plus the expected cost of InsertMin on a burrowed
heap with full burrow, lg(N/2− k) < lgN .

Putting this all together, the expected cost of AddElement is less than

(4k + 3)/(4k + 4)(γ + (k/N)((2k + 1)/12 + lgN)) + (3 lgN)/(4k + 4) + 1.

where the final 1 is, as before, the initial comparison to the current median.
This is less than

γ + 1 + (k/N + 3/4k) lgN + k2/4N.

For any fixed k, this is of course still Θ(lgN). If, however, we let k grow as
lgN , periodically expanding the burrow’s array, then the expected number
of comparisons can be made less than γ+ 1 + ε+ o(1) for any preassigned ε.
The ε can be eliminated as well by permitting k to grow at any rate in
ω(logN), but if we do so then the rate of growth of k becomes the worst-
case bound in place of O(logN) since we might have to traverse half the
burrow on each Insert.

4 d-ary and Burgeoning Heaps

Instead of using binary heaps for priority queues, we can use d-ary heaps,
that is, increasing trees in which each node (with possibly a single exception)
has either zero or d children. Such heaps can be kept in an array exactly the
same way as binary heaps: the root is at index 1, the children of the node
at index i are at indices di− d+ 2, di− d+ 1, . . ., di+ 1, and the parent
of the node at index i is at index b(i + d − 2)/dc. (The multiplication and

8



d γd d γd d γd

2 2.06 6 1.25 32 1.05
3 1.56 7 1.21 64 1.025
4 1.39 8 1.18 128 1.013
5 1.30 16 1.10 256 1.007

Table 1: Estimated upper bounds on γd, which is imprecisely defined and
may not exist, for selected d, chiefly powers of 2.

division by d to traverse the heap can be expensive; in practice, d should be
a power of 2 so that bit shifts can be used instead.)

A d-ary heap is shallower than a binary heap by a factor of log d/ log 2.
With shorter path to the root, Insert is cheaper, and if we consider Insert
alone there’s no downside to increasing d indefinitely—in the limit we get
a set with distinguished smallest element, and Insert requires exactly one
comparison. We define γd as the expected number of comparisons for Insert
into a d-ary heap during basic online median finding (i.e., with no burrows).
Table 1 has several experimentally-determined approximations to γd.

The effect on DeleteMin of increased d is less monotonic. Although
there are fewer levels to bubble down, there are d comparisons at each level
to swap the travelling element with its smallest child. Assuming as before
that bubbling continues to the bottom, the total number of comparisons
is d logdN which has a minimum at d = e. In practice, the best d for a
given application depends on the mix of Inserts and DeleteMins; as the
proportion of Inserts increases, the optimal value of d also increases.

With d-ary heaps the expected comparison count for AddElement is less
than

γd + 1 + (k/N + (d+ 1)/4k) logdN + k2/4N

which, assuming γd → 1 as d → ∞, can be made less than 2 + ε + o(1)
for any preassigned ε by choosing sufficiently large d and letting k grow as
k0 logN for appropriate k0. The worst-case number of comparisons remains
O(log n).

We can bring the expected number of comparisons down to 2+o(1) at the
cost of relaxing the O(logN) worst-case bound by permitting d to increase
with N . The standard implementation of heaps makes this difficult; it is
not practical to restructure a heap on fly to increase its arity. Instead, we
can use a data structure we might call a burgeoning heap, in which the
arity of the tree is not constant but increases as the tree becomes higher.

Such a heap can be stored in an array without loss of space in fully

9



N mean comps, new new mean comps,
d = 2 & k = 0 d k new d & k

100 7.87 8 10 3.10
1000 10.04 32 100 2.70

100000 15.26 32 2500 2.31
1000000 17.50 64 2000 2.23

100000000 22.72 128 3500 2.072

Table 2: Experimental results. “Mean comps” counts comparisons during
only the final 10% of calls on AddElement.

efficient manner: We keep two auxiliary arrays that store, for each level
of the tree, the arity at that level plus a “displacement” that permits us to
waste no array locations. If these arrays are called Arity and Displacement,
then the index of the leftmost child of the node with index i is

i ∗ Arity[d(i)] + Displacement[d(i)]

where d(i) is the depth of node i. The rate of burgeoning is controlled by
picking d at the start of each new heap level, then adjusting the displacement
so the next array element used is the next one free. This scheme is reasonable
in practice as long as we access the tree only by traversing it from top to
bottom or bottom to top, so we can keep track of the current level as we go
rather than computing or storing it.

With burgeoning heaps we can let d increase with N , then let k grow at
any rate in ω(logN), say k = (logN)1.1. The rate of growth of k becomes
the worst-case bound and the expected number of comparisons is 2 + o(N).

5 Results

Table 2 gives some experimental results. It reports average number of com-
parisons for AddElement over many runs of the algorithm. Number of com-
parisons is measured “at the margin”, that is, during only the final 10% of
calls on AddElement. We compare the basic algorithm using binary heaps
and no burrow against the same algorithm with burrowed heaps having fixed
arity and burrows of fixed size.

10



References

[BF] Blum, Floyd, Pratt, Rivest, and Tarjan, “Time bounds for selection,”
J. Comput. System Sci. 7 (1973) 448-461.

[BS] Bollabas and Simon, “Repeated random insertion into a priority
queue,” J. Alg 6 (1985) 466–477.

[CH] Cantone and Hofri, “Analysis of An Approximate Median Selection
Algorithm,” ftp.cs.wpi.edu/pub/techreports/pdf/06-17.pdf

[DZ] Dor and Zwick, “Selecting the Median,” SIAM J. Comput. 28, 5 (May
1999) 1722–1758.

[LD] Lewis and Denenberg, Data Structures and Their Algorithms, Harper-
Collins, 1991, pp 110ff.

[PS] Porter and Simon, “Random insertion into a priority queue structure,”
IEEE Transactions on Software Engineering 1 (1975), 292–298.

Acknowledgement: The author thanks Google Inc. for posing the problem
and for providing ample leisure time to work on the solution.

11


