
The question of the number of zeroes at the end of N ! is a chestnut
dating back at least several decades. The well-known answer is

L5(N) =
1X

i=1

bN/5ic.

Justification: There is exactly one trailing zero for each factor of 10
in N !, and each factor of 10 arises from a factor of 2 and a factor of 5. There
are obviously many more of the former, so we need only count factors of 5.
Every fifth integer contributes a factor of 5, total bN/5c. Every twenty-fifth
integer contributes another, for an additional bN/52c, and so forth.

Now let’s ask what happens when N ! is written in a base other than 10.
Let Zb(N) denote the number of trailing zeroes whenN ! is written in integral
base b � 2. Once again, each such zero arises from a factor of b. Writing

b as its unique prime factorization b = 2b23b3 · · · pbpii · · · where pi is the ith

prime, we see that to get a trailing zero we need b2 factors of 2, b3 factors
of 3, and so forth. The number of factors of p in N ! is Lp(N), so each p with
bp > 0 constrains the number of trailing zeros to be at most bLp(N)/bpc.
The number we want is the minimum of all these constraints:

Zb(N) = min{bLpi(N)/bpic} (1)

where the minimum is taken over all i such that pi divides b.
For b = 10 this formula becomes min{L2(N), L5(N)}. But we’ve said

that the answer is simply L5(N) because there are “obviously” many more
factors of 2 than of 5. That is, 5 is the “limiting factor”; the L2 term can
be ignored because it’s always greater than the L5 term. In the rest of this
note we examine this question more generally, asking when exactly can we
ignore terms of (1) as we can ignore the L2 term when b = 10.

We start by generalizing the observation that worked for b = 10: If
p and q are positive integers with p < q, then clearly Lp(N) � Lq(N).
Hence when b has prime factors p and q with p < q and bp  bq there will
always be enough factors of p to go around, that is, bLp(N)/bpc is necessarily
greater than bLq(N)/bqc and the Lp term in (1) can be ignored.

So, for example, with b = 13500 = 223353 we have Zb(N) = bL5(N)/3c
since the L2 and L3 terms in the minimum are necessarily larger than the
L5 term. Similarly, with b = 1389150 = 21345273 we can ignore the L2 and
L5 terms, but not the others, giving Zb(N) = min{bL3(N)/4c, bL7(N)/3c}.
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But this can’t be the whole story. Consider base b = 3072 = 21031.
Clearly 2 is now the limiting factor: we need so many 2s for each 3 that
there will always be 3s and to spare. Hence we need only count 2s, that is,
we can ignore the L3 term in (1). The rule above doesn’t capture this case.

Let’s estimate the value of bZp(N)/bpc by dropping all use of the floor
function. The result is N/(p � 1)bp since Zp becomes simply the sum of a
geometric sequence. So 1/(p � 1)bp is a multiplier that approximates the
proportion of trailing zeros that p can contribute to N !. Now when b has
factors pbp and qbq , the smaller of 1/(p� 1)bp and 1/(q � 1)bq indicates the
limiting factor, and we can drop the term in (1) corresponding to the larger.
It’s easier to work with reciprocals, retaining the term corresponding to the
larger of (p � 1)bp and (q � 1)bq. In the b = 3072 example, (2 � 1)10 is
greater than (3 � 1)1, hence we can discard the L3 term of (1), as we had
already concluded. Note that this rule subsumes the previous rule, since if
p < q and bp < bq then necessarily (q � 1)bq > (p� 1)bq.

The correctness of this new rule depends on the following lemma: For
primes p and q and positive integers bp and bq such that (q�1)bq > (p�1)bp,
we have bZp(N)/bpc � bZq(N)/bqc for all N . Is this lemma true?

It’s easy to see that it’s true for all su�ciently large N , that is, for any
such p, q, bp, bq there exists N0 such that the lemma is true for all N > N0.
Proof: Dropping a single use of the floor function increases a value by at
most 1, so dropping all floor functions in Lp(N) increases its value by at
most logpN plus a constant. Hence our estimate is too high by at most
(logpN)/bp plus a constant. But the di↵erence between two such estimates
is N times a fixed constant, and so for all su�ciently large N exceeds the
maximum possible error. Hence using the estimate yields the correct answer
for large N . Based on numerical experimentation we conjecture that the
lemma is in fact true for all N .

Finally, what happens when (p� 1)bp is exactly equal to (q� 1)bq? Base
b = 12 = 2231 is a simple example: (2 � 1) ⇤ 2 = (3 � 1) ⇤ 1 = 2. Is there
an additional criterion we can use to eliminate one term or the other? We
conjecture that the answer is no, that is, we believe that for primes p and
q and positive integers bp and bq such that (p � 1)bp = (q � 1)bq, we have
bZp(N)/bpc > bZq(N)/bqc for infinitely many N . (This conjecture is borne
out by experimental evidence, but we have no other justification for it.) It
follows that if there are two terms with maximal (p � 1)bp, both must be
retained. Assuming the truth of the conjecture generalized in the obvious
way to multiple primes, all terms with maximal (p� 1)bp must be retained.

In summary, if our conjectures are true, then the terms of (1) that may
be discarded are exactly those whose value of (pi � 1)bpi is not maximal.
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